solving bvp differential equation
4 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
I want to solve bvp differential equation. but after a lot of effort I couldn't . my equation is:
(k1*cos(teta)^2+k3*sin(teta)^2)*(d^2(teta)/dz^2)+0.5*(k3-k1)*2*cos(teta)*sin(teta)*(d(teta)/dz)^2+(mu)^-1*kapa*b^2*sin(teta)*cos(teta)=0
NOTE:
1. k1, k3, kapa, mu are constants.
2. teta is a function of z.
3. my boundary condition is : teta(z=0)=0 , teta(z=d)=0 , teta'(z=d/2)=0
- I don't know to write third bondary condition ( my interval is [0,d]) *I try to solve it with the example of 3 in BVP_tutorial.pdf but I can't ( faced with a lot error)
- My code is:*
function mat4bvp
w = 2;
L=5*10^-6; % is d
solinit = bvpinit(linspace(0,L,10),@mat4init,w);
sol = bvp4c(@mat4ode,@mat4bc,solinit);
fprintf('The fourth eigenvalue is approximately %7.3f.\n',...
sol.parameters)
xint = linspace(0,L);
Sxint = deval(sol,xint);
plot(xint,Sxint(1,:))
axis([0 L 0 1.6])
title('Eigenfunction of Mathieu''s equation.')
xlabel('x')
ylabel('solution y')
% -----------------------------------------------------------------------------
% w is magnetic field (B)
function dydx = mat4ode(x,y,w)
mu = 4*pi*10^-7;
kapa=9.5*10^-7;
k11=5.3*10^-12;
k33=7.3*10^-12;
dydx = [ y(2)
-0.5*(k33-k11)*2*cos(y(x))*sin(y(x))*y(2)-((mu)^-1*kapa*w^2*sin(y(x))*cos(y(x)))];
% ------------------------------------------------------------------------------
function res = mat4bc(ya,yb,w)
res = [ ya(1)
yb(1)];
% ------------------------------------------------------------
function yinit = mat4init(x)
L=5*10^-6;
yinit = [cos((pi/L)*x)];
0 commentaires
Réponses (0)
Voir également
Catégories
En savoir plus sur Partial Differential Equation Toolbox dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!