Need the backward trajectories of ode plot
2 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
I have a system of differential equations which I can solve by Euler's method. The following code gives a plot of a trajectory that starts from x(1)=0.7; y(1)=0.11; and depicts its evolution in forwarding time. But I need a trajectory that starts from x(1)=0.7; y(1)=0.11; and evolved in backward time. That mean what will be the plot if t tends to -infinity. Please correct my code so that I can get backword evolution of trajectories:
clear
alpha=.5;gamma=1; delta=0.3; L=.4; beta=1.778;
x(1)=0.7;
y(1)=0.11;
t(1)=0;
for i=1:50000
t(i+1)=t(i)+.01;
x(i+1)=x(i)+.01*[x(i)*((1-x(i))*(x(i)/L-1)-beta*y(i)/(x(i)+alpha))];
y(i+1)=y(i)+.01*[beta*x(i)*y(i)/(x(i)+alpha)-gamma*y(i)-delta*y(i)^2];
end
plot(x,y, 'b')
axis([.4 1 0 .22])
0 commentaires
Réponses (1)
Jan
le 14 Juil 2013
Do you ask for changing the line:
t(i+1) = t(i) + 0.01;
to
t(i+1) = t(i) - 0.01;
?
4 commentaires
Jan
le 16 Juil 2013
Modifié(e) : Jan
le 16 Juil 2013
"for i=50000:1" does not enter the loop at all. You need the stepsize of -1.
I cannot test it currently, but let me guess:
for i = 50000:-1:2
t(i-1) = t(i) - 0.01;
x(i-1) = x(i) + 0.01*[x(i)*((1-x(i))*(x(i)/L-1)-beta*y(i)/(x(i)+alp ha))];
y(i-1) = y(i) + 0.01*[beta*x(i)*y(i)/(x(i)+alpha)-gamma*y(i)-delta*y(i)^2];
end
Voir également
Catégories
En savoir plus sur Waveform Design and Signal Synthesis dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!