Need the backward trajectories of ode plot

2 vues (au cours des 30 derniers jours)
Atom
Atom le 14 Juil 2013
I have a system of differential equations which I can solve by Euler's method. The following code gives a plot of a trajectory that starts from x(1)=0.7; y(1)=0.11; and depicts its evolution in forwarding time. But I need a trajectory that starts from x(1)=0.7; y(1)=0.11; and evolved in backward time. That mean what will be the plot if t tends to -infinity. Please correct my code so that I can get backword evolution of trajectories:
clear
alpha=.5;gamma=1; delta=0.3; L=.4; beta=1.778;
x(1)=0.7;
y(1)=0.11;
t(1)=0;
for i=1:50000
t(i+1)=t(i)+.01;
x(i+1)=x(i)+.01*[x(i)*((1-x(i))*(x(i)/L-1)-beta*y(i)/(x(i)+alpha))];
y(i+1)=y(i)+.01*[beta*x(i)*y(i)/(x(i)+alpha)-gamma*y(i)-delta*y(i)^2];
end
plot(x,y, 'b')
axis([.4 1 0 .22])

Réponses (1)

Jan
Jan le 14 Juil 2013
Do you ask for changing the line:
t(i+1) = t(i) + 0.01;
to
t(i+1) = t(i) - 0.01;
?
  4 commentaires
Atom
Atom le 16 Juil 2013
Modifié(e) : Atom le 16 Juil 2013
Do you mean this?
alpha=.5;gamma=1; delta=0.3; L=.4; beta=1.778;
x(50000)=0.7;
y(50000)=0.11;
t(50000)=0;
for i=50000:1
t(i+1)=t(i)-.01;
x(i+1)=x(i)+.01*[x(i)*((1-x(i))*(x(i)/L-1)-beta*y(i)/(x(i)+alpha))];
y(i+1)=y(i)+.01*[beta*x(i)*y(i)/(x(i)+alpha)-gamma*y(i)-delta*y(i)^2];
end
plot(x,y, 'b')
axis([.4 1 0 .22])
But this does not servers the purpose. Please help me to solve the issue. I am very sorry for the inconvenience for the repeated request.
Jan
Jan le 16 Juil 2013
Modifié(e) : Jan le 16 Juil 2013
"for i=50000:1" does not enter the loop at all. You need the stepsize of -1.
I cannot test it currently, but let me guess:
for i = 50000:-1:2
t(i-1) = t(i) - 0.01;
x(i-1) = x(i) + 0.01*[x(i)*((1-x(i))*(x(i)/L-1)-beta*y(i)/(x(i)+alp ha))];
y(i-1) = y(i) + 0.01*[beta*x(i)*y(i)/(x(i)+alpha)-gamma*y(i)-delta*y(i)^2];
end

Connectez-vous pour commenter.

Catégories

En savoir plus sur Waveform Design and Signal Synthesis dans Help Center et File Exchange

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by