numarical question interpolating polynomial code

18 vues (au cours des 30 derniers jours)
Mai Mahmood
Mai Mahmood le 10 Mai 2021
Commenté : image-pro le 12 Avr 2022
what are the results of the folowing code based on the table below and how do i plot interpolating polynomial
n = input('Enter n for (n+1) nodes, n: ');
x = zeros(1,n+1);
y = zeros(n+1,n+1);
for i = 0:n
fprintf('Enter x(%d) and f(x(%d)) on separate lines: \n', i, i);
x(i+1) = input(' ');
y(i+1,1) = input(' ');
end
x0 = input('Now enter a point at which to evaluate the polynomial, x = ');
n = size(x,1);
if n == 1
n = size(x,2);
end
for i = 1:n
D(i,1) = y(i);
end
for i = 2:n
for j = 2:i
D(i,j)=(D(i,j-1)-D(i-1,j-1))/(x(i)-x(i-j+1));
end
end
fx0 = D(n,n);
for i = n-1:-1:1
fx0 = fx0*(x0-x(i)) + D(i,i);
end
fprintf('Newtons iterated value: %11.8f \n', fx0)
  2 commentaires
Rik
Rik le 11 Mai 2021
Modifié(e) : Rik le 11 Mai 2021
I recovered the removed content from the Google cache (something which anyone can do). Editing away your question is very rude. Someone spent time reading your question, understanding your issue, figuring out the solution, and writing an answer. Now you repay that kindness by ensuring that the next person with a similar question can't benefit from this answer.
image-pro
image-pro le 12 Avr 2022
how can apply above same method on mri image

Connectez-vous pour commenter.

Réponses (1)

DGM
DGM le 10 Mai 2021
% don't waste the user's time and invite error by making them
% retype every single number every time the script runs
x = 1.4:0.2:2.6;
y = [2.151 2.577 3.107 4.015 5.105 6.314 7.015];
x0 = 2.2
n = numel(x);
D = zeros(n);
D(:,1) = y'; % no loop needed
for i = 2:n
for j = 2:i
D(i,j)=(D(i,j-1)-D(i-1,j-1))/(x(i)-x(i-j+1));
end
end
% find val at query point
fx0 = D(n,n);
for k=(n-1):-1:1
fx0 = fx0*(x0-x(k)) + D(k,k);
end
% find poly coefficients to meet points
C = D(n);
for k = n:-1:1
fx0 = fx0*(x0-x(k)) + D(k,k);
C = conv(C,poly(x(k)));
nc = numel(C);
C(nc) = C(nc) + D(k,k);
end
% outputs
fprintf('Newtons iterated value: %11.8f \n', fx0)
clf
plot(x,y); hold on; grid on
xx = linspace(1.4,2.6,50);
plot(xx,polyval(C,xx));
C
  1 commentaire
DGM
DGM le 10 Mai 2021
The given x from the table is a uniformly increasing vector with a step size of 0.2.
x = 1.4:0.2:2.6
x =
1.4000 1.6000 1.8000 2.0000 2.2000 2.4000 2.6000

Connectez-vous pour commenter.

Catégories

En savoir plus sur Interpolation dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by