when using genetic algorithm, the number of variables(nvar) is dependant on the row vector(x) that my fitness function accepts. How can I deal with that?
2 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Hello all,
I need to write something like this: ga(h, sum(x(1:5)),[],[],[],[],LB,UB,[],[],ga_opts);
as you see, the number of variables (nvar) is dependant on the vector I want to optimize(x). Is there any way I can deal with this problem?
Thank you
0 commentaires
Réponses (2)
amanita
le 29 Nov 2013
I dont know if this is relevant, but i usually set nvars as the maximum number of variables and keep in the fitness function only the ones needed. For example, i have a vector of coefficients W that i want to optimize, but its length is dependent on an integer variable I, ie; If i have I=2 i need a vector W with 2 elements, if I=4 i need W with 4 elements. If the maximum number for I is 10. Then:
h = @(X) NETWORK_mex(X);
nvars=11;
LB=[1 -1*ones(1,10)]
UB=[10 ones(1,10)]
[x, err] = ga(h, nvars,[],[],[],[],LB,UB,[],1,ga_opts);
And inside the fitness function:
function J=NETWORK(X)
I=X(1);
W=X(2:I+1);
...
0 commentaires
Voir également
Catégories
En savoir plus sur Genetic Algorithm dans Help Center et File Exchange
Produits
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!