Using Multistart with constrainted fmincon

13 vues (au cours des 30 derniers jours)
Meikel Vollmers
Meikel Vollmers le 25 Mai 2021
Commenté : Meikel Vollmers le 31 Mai 2021
Hey,
i want to optimize a constrainted function using fmincon. To find the global optimum, i found out that the use of MultiStart is helpful. My function looks like this
Here is my code for the use of fmincon
k = [5,7];
p = [1:4];
a = [pi/11, pi/7, pi/6, pi/3]; %Initial guesses
weights=(1./k.^4);
weights=weights/sum(weights);
fun = @(a) sqrt(sum( weights(:).*( 1 + 2*sum( (-1).^p.*cos(k(:).*a(p)) ,2) ).^2) );
A = [1, -1,0,0;0, 1, -1, 0; 0,0,1,-1]; % a1 < a2 < a3 ..
B = [0,0,0];
Aeq = [];
Beq = [];
lb = [0,0,0,0];
ub = [pi/4,pi/4,pi/4,pi/4];
function [c,ceq] = modindex(a,p) % saved as a seperate script
c = [];
ceq = 4/pi.*( 1 + 2*sum( (-1).^p.*cos(a(p)) ,2 ))-0.6;
end
nlcon = @(a) modindex(a,p); % this is a constraint, implemented as a function
x = fmincon(fun, a, A, B, Aeq, Beq, lb, ub,nlcon)
For the use of fmincon this code works, but now i want to run it with MultiStart. My question is how to respect all of my constraints?
My first try was this
problem = createOptimProblem('fmincon', 'objective', fun, 'x0', [pi/11, pi/7, pi/6, pi/3],'A', [1, -1,0,0;0, 1, -1, 0; 0,0,1,-1],...
'b',[0,0,0], 'Aeq', [], 'beq', [], 'lb', [0,0,0,0], 'ub', [pi/4,pi/4,pi/4,pi/4], 'nonlcon', @(a) modindex(a,p));
ms = MultiStart( 'UseParallel', 'allways', 'StartPointstoRun', 'bounds');
[x,f] = run(ms, problem, 10)
This doesnt work, "No field A exists for PROBLEM structure."
What does my code must look like, that all of the constraints are respected?
Kind regards

Réponse acceptée

Matt J
Matt J le 25 Mai 2021
problem = createOptimProblem('fmincon', 'objective', fun, 'x0', [pi/11, pi/7, pi/6, pi/3],'Aineq', [1, -1,0,0;0, 1, -1, 0; 0,0,1,-1],...
'bineq',[0,0,0], 'Aeq', [], 'beq', [], 'lb', [0,0,0,0], 'ub', [pi/4,pi/4,pi/4,pi/4], 'nonlcon', @(a) modindex(a,p));
  21 commentaires
Matt J
Matt J le 29 Mai 2021
Modifié(e) : Matt J le 29 Mai 2021
We can prove mathematically that the smallest value m can have is about 0.527393087579050.
First, because the sequence of are monotonic in [0,],
Therefore,
So, you cannot consider any m lower than this value.
Also, this is a tight lower bound, achieved for example by choosing and all other .
Meikel Vollmers
Meikel Vollmers le 31 Mai 2021
Yeah, got it, youre right. Thats a mistake made in the paper i read. Matt, youre the best, thanks a lot!
I will replace the upper bound with pi/2 instead of pi/4. That will also guarantee the quater and halfwave symmetrie of my pulses.

Connectez-vous pour commenter.

Plus de réponses (0)

Catégories

En savoir plus sur Global or Multiple Starting Point Search dans Help Center et File Exchange

Produits


Version

R2020b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by