Leave-One-Out with ROC
7 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Hi smart guys,
May I ask how to create ROC for the leave-one-out cross-validation?
I create partition of the data as:
cvPartition = cvpartition(dataSize, 'leaveout');
However, when I take
model = ClassificationDiscriminant.fit(X, Y, 'DiscrimType', 'linear');
[predictL, predictS] = model.predict(X_Test);
performanceVec = classperf(Y_Teset, predictL);
[FPR, TPR ,~, AUC] = perfcurve(Y_Test, predictS(:,2), 1);
in which, `X, Y, X_Test, Y_Test` are obtained from `cvPartition`. Then there are errors:
Error using classperf (line 205)
Ground truth must have at least two classes.
Error using perfcurve (line 368)
Less than two classes are found in the array of true class labels.
Anyone can give an example of using leave one out cross validation and ROC analysis using Matlab? Thanks a lot.
A.
0 commentaires
Réponse acceptée
Ilya
le 6 Août 2013
Modifié(e) : Ilya
le 6 Août 2013
Here is an example for cross-validating a discriminant model: http://www.mathworks.com/help/stats/discriminant-analysis.html#bs2r8ue. Here is a description of the crossval method: http://www.mathworks.com/help/stats/classificationdiscriminant.crossval.html. You can just replace 'kfold',5 with 'leaveout','on' in that example.
0 commentaires
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Discriminant Analysis dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!