How can I go back and resolve failed attempts?
1 vue (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Hi everyone, so I have the following code:
clc;
clear;
% Import data
% PD: probability of default
% CM: covariance matrix
% DT: default threshold
PD = xlsread('Data_CIMDO.xlsx','PD');
CM = xlsread('Data_CIMDO.xlsx','COV');
DT = xlsread('Data_CIMDO.xlsx','DT');
Original_PD = PD; %Store original PD
LM_rows = 11; %Expected LM rows
LM_columns = length(PD) %Expected LM columns
LM_FINAL = zeros(LM_rows,LM_columns); %Dimensions of LM_FINAL
for i = 1:length(PD)
PD = Original_PD(:,i);
options = optimset('Display','iter');
x0 = rand(size(PD,1)+1,1);
[LM,fval,exitflag] = fsolve(@(x)ConstLM(x,PD,CM,DT), x0, options);
LM_FINAL(:,i) = LM;
end
Now since the code depends on the initial value (x0) when solving for LM, after one run of the code there are many unsolved values for LM as the initial x0 was incorrectly guessed. So how can I adjust the code such that it keeps running until all LM's have been solved?
Thanks.
0 commentaires
Réponse acceptée
Jan
le 6 Août 2013
Modifié(e) : Jan
le 6 Août 2013
...
for k = 1:100
[LM, fval, exitflag] = fsolve(@(x)ConstLM(x,PD,CM,DT), x0, options);
if exitflag == 1
break;
end
end
if exitflag ~= 1
warning('FSOLVE did not find a solution.');
end
...
I'd prefer such a loop with a maximum loop counter to guarantee that the function stops in finite time.
2 commentaires
Walter Roberson
le 7 Août 2013
You can put the
x0 = rand(size(PD,1)+1,1);
before the fsolve() call to use a new starting point each time.
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Get Started with MATLAB dans Help Center et File Exchange
Produits
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!