How I can specify more parameters to GA in order to speed up my code execution. with the help of (optimoptions function of ga).. opts = optimoptions(@ga,
4 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
%% Genetic Algorithm
FT=@(x)-Genetic_A(x);
A = []; % No other constraints
b = [];
Aeq = [];
beq = [];
lb = zeros(1,n);
ub = ones(1,n);
[x,fval] = ga(FT,n,A,b,Aeq,beq,lb,ub);
C_ga = -fval;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function C_ga = Genetic_A(x)
global G Pn Pt F H %G,F,H Matrices and Pn,Pt scalar
theta = (2*pi)*(x); %Reflecting Angle IRS, where x is a vector of size 1xn
Phi = diag(exp(1i*theta)); %phase shift Matrix for IRS, % Set Amp = 1
HT = H+F*Phi*G; %Channel Matrix
W = pinv(HT); %Precoding Matrix
W_bar = W./vecnorm(W,2,1); %Normalized
D_Matrix = HT*W_bar; %Diagonal Matrix
D_Square = (abs(diag(D_Matrix))').^2; % Channel gains
%% Water_filling
P = waterfill(Pt,Pn./D_Square);
R = P.*D_Square/Pn;
C_ga = sum(log2(1+R)); %Capacity
Réponses (1)
Abdolkarim Mohammadi
le 3 Juin 2021
Indeed vectorization helps a lot for non-simulation objective functions. You should use the UseVectorized option.
0 commentaires
Voir également
Catégories
En savoir plus sur Genetic Algorithm dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!