Trying to plot number of iterations vs gridsize for steady state
6 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
I need to compute the number of iterations taken to reach the steady-state within a given tolerance. I then need to plot the final number of iterations against the grid size but I cannot for the life of me work out how I am supposed to do that. How am I suppose to set up and then plot those two things?
Code:
n=2;
nx=2^n;
nz=nx;
a=25;
b=25;
x = linspace(0, a, nx);
z = linspace(0, b, nz);
[X, Z] = meshgrid(x,z);
Tnp1 = zeros(nx, nz);
Tnp1(:,1) = 20;
Tnp1(:,end) = 20;
Tnp1(1,:) = 20+380*sin((X.*pi)/25)+205*sin((X.*5*pi)/25);
Tnp1(end,:) = 20;
err = 1;
tol = 1e-8;
k=0;
while err > tol
Tn = Tnp1;
k=k+1;
for i = 2:nx-1
for j = 2:nz-1
Tnp1(i,j) = (1/4)*(Tn(i+1,j)+Tn(i-1,j)+Tn(i,j+1)+Tn(i,j-1));
end
end
err = max(abs(Tnp1(:) - Tn(:)));
end
T = Tnp1;
plot(X,k)
end
end
0 commentaires
Réponses (1)
SALAH ALRABEEI
le 5 Juin 2021
Modifié(e) : SALAH ALRABEEI
le 5 Juin 2021
Hi, this looks like a diffusion equation solved by FDM. you had to mistakes, I already corrected them, n is the step size or grid size, and the u should have used x not X in the boundary condition conditions. See the code below
clear N = [2,4]; for kk = 1: length(N) n=N(kk); nx=2^n; nz=nx; a=25; b=25; x = linspace(0, a, nx); z = linspace(0, b, nz); [X, Z] = meshgrid(x,z); Tnp1 = zeros(nx, nz); Tnp1(:,1) = 20; Tnp1(:,end) = 20; Tnp1(1,:) = 20+380*sin((x.*pi)/25)+205*sin((x.*5*pi)/25); Tnp1(end,:) = 20; err = 1; tol = 1e-8; k=0; while err > tol Tn = Tnp1; k=k+1; for i = 2:nx-1 for j = 2:nz-1 Tnp1(i,j) = (1/4)*(Tn(i+1,j)+Tn(i-1,j)+Tn(i,j+1)+Tn(i,j-1)); end end err = max(abs(Tnp1(:) - Tn(:))); end T = Tnp1; %subplot(2,2,kk) %surf(X,Z,T),grid %title([' Profile at grid = ' num2str(kk)])
Num_iter(kk) = k; end
figure(2) plot(N,Num_iter),grid
2 commentaires
SALAH ALRABEEI
le 5 Juin 2021
Modifié(e) : SALAH ALRABEEI
le 5 Juin 2021
%
clear
N = [2,4];
for kk = 1: length(N)
n=N(kk);
nx=2^n;
nz=nx;
a=25;
b=25;
x = linspace(0, a, nx);
z = linspace(0, b, nz);
[X, Z] = meshgrid(x,z);
Tnp1 = zeros(nx, nz);
Tnp1(:,1) = 20;
Tnp1(:,end) = 20;
Tnp1(1,:) = 20+380*sin((x.*pi)/25)+205*sin((x.*5*pi)/25);
Tnp1(end,:) = 20;
err = 1;
tol = 1e-8;
k=0;
while err > tol
Tn = Tnp1;
k=k+1;
for i = 2:nx-1
for j = 2:nz-1
Tnp1(i,j) = (1/4)*(Tn(i+1,j)+Tn(i-1,j)+Tn(i,j+1)+Tn(i,j-1));
end
end
err = max(abs(Tnp1(:) - Tn(:)));
end
T = Tnp1;
%subplot(2,2,kk)
%surf(X,Z,T),grid
%title([' Profile at grid = ' num2str(kk)])
Num_iter(kk) = k;
end
figure(2)
plot(N,Num_iter),grid
Voir également
Catégories
En savoir plus sur Numerical Integration and Differentiation dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!