How to find the zero crossing in x and time data sets?
272 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
vimal kumar chawda
le 9 Juin 2021
Modifié(e) : Stefan Schuberth
le 27 Juil 2022
How can I find the zero crossing in the data sets?
figure()
plot(x,t)
3 commentaires
Réponse acceptée
Scott MacKenzie
le 9 Juin 2021
Modifié(e) : Scott MacKenzie
le 10 Juin 2021
Here's what I put together. The variable fCross is what you are looking for.
% data from posted matlab.mat files
f = readmatrix('testdata1.txt');
t = readmatrix('testdata2.txt');
tiledlayout(3,1);
nexttile;
plot(t,f);
hold on;
axis([1 10 -1.2 1.2]);
nexttile;
fAbove = f .* (f >= 0);
fBelow = f .* (f <= 0);
area(t, fAbove, 'FaceColor', 'r');
hold on;
area(t, fBelow, 'FaceColor', 'g');
axis([1 10 -1.2 1.2]);
nexttile;
fCrossRaw = find(diff(fAbove>0));
fCross = fCrossRaw ./ length(t)*10; % as per axes
plot(fCross, zeros(1,length(fCross)), '*r');
hold on;
axis([1 10 -1.2 1.2]);
xline(fCross, 'color', [.7 .7 .7]);
yline(0, 'color', [.7 .7 .7]);
2 commentaires
Scott MacKenzie
le 10 Juin 2021
@vimal kumar chawda You're welcome. I just updated my answer to make the 3rd plot look a bit better.
Plus de réponses (2)
Stefan Schuberth
le 27 Juil 2022
Modifié(e) : Stefan Schuberth
le 27 Juil 2022
If you have (x,y) data and want to do it without using loops try that:
i=find(y(1:end-1).*y(2:end)<0); % index of zero crossings
m=(y(i+1)-y(i))./(x(i+1)-x(i)); % slope
x0=-y(i)./m+x(i); % x coordinates of zero crossings linear interpolated
0 commentaires
Joel Lynch
le 9 Juin 2021
Modifié(e) : Joel Lynch
le 9 Juin 2021
idx = find( f(2:end).*f(1:end-1)<0 )
Will return the left-hand indicies of cross-over points.
To get the exact X-values where the cross-over occurs, you would have to do some linear intepolation (inverted)
t_zero = zeros(size(idx));
for i=1:numel(idx)
j = idx(i); % Need both the index in the idx/t_zero vector, and the f/t vector
t_zero(i) = interp1( f(j:j+1), t(j:j+1), 0.0, 'linear' );
end
Note: this will fail if the cross-over happens on the last i value (i+1 would extend outside the range of the dataset)
4 commentaires
Scott MacKenzie
le 11 Juin 2021
Modifié(e) : Scott MacKenzie
le 29 Juin 2021
Yes, Joel's code gives the exact cross-over point. Bear in mind, however, that this is exact for the linearly interpolated data. The actual data are empirical, so it is not possible to know the exact cross-over point.
It probably doesn't matter much in this case, since the data appear to be gathered at a high sampling rate.
Voir également
Catégories
En savoir plus sur Surface and Mesh Plots dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!