I need to to solve this coupled ODEs. I have written the code but not really getting any output. Any help would be appreciated!
11 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens


function [time, x, xdot, y] = bluff
meff = 0.0114; %Effective mass (kg)
ceff = 0.0212; %Effective damping (N/(m/s))
keff = 8.86; %Effective stiffnes (N/m)
thet = 0.000019758; %Electromechanical coefficient (N/V)
Cp = 0.0000000157; %Capacitance
rho = 1.225; %air density (kg/m3)
u = 10; %wind velocity(m/s)
stip = 0.0118; %exposed area of the bluff body(m2)
L = 0.15 ; %length of the beam
a1 = 2.3; %empirical coefficient for the aerodynamic force calculation
R = 1050000; %load resistance (ohm)
%values
x0 = 1; xdot0 = 0; y0 = 1;
t0 = 0; tf = 60;
%Time span
tspan = [t0, tf];
%initial conditions
IC = [x0, xdot0,y0];
% [sdot] = g(t,s)
sdot = @(t, s) [s(2);
(-ceff*s(2) - keff*s(1) - thet*s(3) + 0.5*rho*stip*(a1*((s(2)/u)+(1.5*s(1)/L))*u^2))/meff;
thet*s(2)/Cp - s(3)/(R*Cp)];
%Call ode45 solver
[time, state_values] = ode45(sdot,tspan,IC);
%Extract individual values
x = state_values(:,1);
xdot = state_values(:,2);
y = state_values(:,3);
%plot x(t) and y(t)
figure(1)
clf
plot(time,x), title('Displacement'), xlabel('time(s)'), ylabel('displacement(m)')
figure(2)
clf
plot(time,y), title ('Voltage generation'), xlabel('time(s)'), ylabel('Output voltage(V)')
end
9 commentaires
Walter Roberson
le 11 Juin 2021
You divide by Cp but Cp is about Pi / 2e8 . When you divide by that, values are magnified a lot.
You might have better success if y0 were a lot smaller.
Réponses (1)
Lewis Fer
le 11 Juin 2021
Hello, I am having troubles solving a system of second order nonlinear equations with boundary conditions using MATALB
Here is the equations:
f''(t)=3*f(t)*g(t) -g(t)+5*t;
g''(t)=-4f(t)*g(t)+f(t)-7*t;
the boundary conditions are: f'(0)=0 et h'(o)=5;
g(0)=3 et h'(2)=h(2)
3 commentaires
Lewis Fer
le 11 Juin 2021
I have post my question in this pub, but there is no answer
https://www.mathworks.com/matlabcentral/answers/853120-how-to-solve-a-system-of-second-order-nonlinear-differential-equations-with-boundary-conditions?s_tid=srchtitle#add_answer
Voir également
Catégories
En savoir plus sur Ordinary Differential Equations dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!