Backward and Central Difference

1 vue (au cours des 30 derniers jours)
Anna Lin
Anna Lin le 11 Juin 2021
Commenté : Anna Lin le 12 Juin 2021
Given that x =10 and delta_x = 0.4,
Is there a better way of writing this code?
x = 10;
delta_x = 0.4;
backward_difference = ((2*f(x)-5*f(x-dx)+4*f(x-2*dx)-f(x-3*dx))/dx^2);
central_difference = (-f(x+2*dx)+16*f(x+dx)-30*f(x)+16*f(x-dx)-f(x-2*dx))/(12*(dx^2));
  2 commentaires
Joseph Cheng
Joseph Cheng le 11 Juin 2021
Modifié(e) : Joseph Cheng le 11 Juin 2021
Have you already defined "f" as an anonymous function or symbolic function? Otherwise if "f" is an array you would be indexing "f" in a non-integer value
Anna Lin
Anna Lin le 11 Juin 2021
Yes, I have already defined f as an anonymous function.
f=@(x) x.^3+sin(x)

Connectez-vous pour commenter.

Réponse acceptée

J. Alex Lee
J. Alex Lee le 11 Juin 2021
I guess the answer depends what you want to do with those finite difference approximations. If you want to use it in an algorithm to solve ODEs, your strategy won't work because you don't a priori have a functional form.
This would be a typical matrix math way (assuming your coefficients are correct, i won't check)
cb = [-1,4,-5,2];
cc = [-1,16,-30,16,-1]/12;
fun = @(x) x.^3+sin(x);
funp = @(x) 3*x.^2 + cos(x);
funpp = @(x) 6*x - sin(x);
dx = 0.5;
x0 = 10;
% create stencils on x to define discrete f
xb = x0 - (3:-1:0)'*dx;
xc = x0 + (-2:2)'*dx;
% generate discrete f
fb = fun(xb);
fc = fun(xc);
% execute finite differences
fbpp = cb*fb/dx^2
fbpp = 60.5508
fcpp = cc*fc/dx^2
fcpp = 60.5437
backward_difference = ((2*fun(x0)-5*fun(x0-dx)+4*fun(x0-2*dx)-fun(x0-3*dx))/dx^2)
backward_difference = 60.5508
central_difference = (-fun(x0+2*dx)+16*fun(x0+dx)-30*fun(x0)+16*fun(x0-dx)-fun(x0-2*dx))/(12*(dx^2))
central_difference = 60.5437
fpp = funpp(x0)
fpp = 60.5440
  3 commentaires
J. Alex Lee
J. Alex Lee le 12 Juin 2021
it is not natural to order it that way (from right node to left note). But it should still work:
fun = @(x) x.^3+sin(x);
dx = 0.5;
x0 = 10;
cb = [2,-5,4,-1];
xb = x0 - (0:3)'*dx
xb = 4×1
10.0000 9.5000 9.0000 8.5000
fb = fun(xb);
fbpp = cb*fb/dx^2 % This will not be 60.5508
fbpp = 60.5508
Anna Lin
Anna Lin le 12 Juin 2021
Thank you.

Connectez-vous pour commenter.

Plus de réponses (0)

Catégories

En savoir plus sur Symbolic Math Toolbox dans Help Center et File Exchange

Tags

Produits


Version

R2021a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by