Optimization least square approach

1 vue (au cours des 30 derniers jours)
Galileo Pini
Galileo Pini le 12 Juin 2021
Modifié(e) : Matt J le 12 Juin 2021
Hi everybody
I'm trying to find the optimum value of a vector of parameters to approximate an experimental set of data starting from a simplified vector x_0
x_0= [0.13084 ; 0 ; 0; 0; 0; 0 ]
par=fminsearch(@(par)errHjk(par,frq_redHjk,csi_i,w0i,Hjk_red_exp),x_0,options);
where has been defined the fun :
function err = errHjk(par, frq_redHjk,csi_i,w0i, Hjk_red_exp)
Aj=par(1,1);
Bj=par(2,1);
Cj=par(3,1);
Dj=par(4,1);
Ej=par(5,1);
Fj=par(6,1);
omega_red= frq_redHjk*2*pi;
Hjki=(Aj+1i*Bj)./(-omega_red.^2+2i*w0i*csi_i+w0i^2) + Cj+1i*Dj +(Ej+1i*Fj)./omega_red.^2 ;
%Output the error
error= (Hjki-Hjk_red_exp);
err = sum (real(error.^2)) + sum(imag(error.^2)) ;
end
instead of find the minimum value the error found by the program continues to increase
Do you know what is wrong with this code ?

Réponses (1)

Matt J
Matt J le 12 Juin 2021
Modifié(e) : Matt J le 12 Juin 2021
Shouldn't it be
err = sum (real(error).^2) + sum(imag(error).^2) ;
If so, then this is a linear least squares problem, and you should probably just use mldivide() instead of fminsearch.

Catégories

En savoir plus sur Interpolation dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by