Understanding the difference between ndgrid and meshgrid (from Numpy)
20 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Radoslav Vuchkov
le 15 Juin 2021
Modifié(e) : Stephen23
le 16 Juin 2021
Hello everyone,
I am just trying to understand a diffrance between ngrid. Please observe the code below when I check the size of the Ngrid2 I get two cells of $10 \times 10$ and three cells of 15 × 15 × 15, but when I do something similar in numpy meshgrid function I get
. Can someone please explain to me the diffrance? Also please advise if there is any way to make Matlab ngrid behave as meshgrid from numpy.

Thank you very much in advance for the consideration!
%Matlab
x = linspace(0,1,5);
[Ngrid2{:}] = ndgrid(x,x);
[Ngrid3{:}] = ndgrid(x,x);
%Python Numpy
x = np.linspace(0,1,5)
z = np.array(np.meshgrid(x,x))
2 commentaires
Réponse acceptée
Stephen23
le 15 Juin 2021
Modifié(e) : Stephen23
le 15 Juin 2021
If you must replicate numpy.meshgrid (with the default indexing='xy') then do not use ndgrid, unless you want to waste time permuting all of the output arrays. The correct way to get the same behavior is to use meshgrid:
x = linspace(0,1,5);
C = cell(1,2);
[C{:}] = meshgrid(x);
Checking:
C{:}
[C{:}] = ndgrid(x); % Note the order of the first two dimensions!
C{:}
And for comparison (by default the same order as meshgrid):
x = np.linspace(0,1,5)
z = np.array(np.meshgrid(x,x))
print(z[0])
print(z[1])
[[0. 0.25 0.5 0.75 1. ]
[0. 0.25 0.5 0.75 1. ]
[0. 0.25 0.5 0.75 1. ]
[0. 0.25 0.5 0.75 1. ]
[0. 0.25 0.5 0.75 1. ]]
[[0. 0. 0. 0. 0. ]
[0.25 0.25 0.25 0.25 0.25]
[0.5 0.5 0.5 0.5 0.5 ]
[0.75 0.75 0.75 0.75 0.75]
[1. 1. 1. 1. 1. ]]
"Can someone please explain to me the diffrance?"
Look at the order of the first two dimensions in the output arrays.
- MATLAB's ndgrid corresponds to np.meshgrid(... indexing='ij')
- MATLAB's meshgrid corresponds to np.meshgrid(... indexing='xy') # default
See the "Notes" here: https://numpy.org/doc/stable/reference/generated/numpy.meshgrid.html
6 commentaires
Stephen23
le 16 Juin 2021
Modifié(e) : Stephen23
le 16 Juin 2021
Rather than creating special cases for the first two dimensions you should consider writing your algorithm to use the consistent NDGRID order/orientation instead (just to be clear: this means changing the rest of your code to suit, and not permuting the arrays).
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Matrices and Arrays dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!