From symbolic to numerical results for quadratic equation

1 vue (au cours des 30 derniers jours)
laura bagnale
laura bagnale le 17 Juin 2021
Hello everyone,
I hope someone could help me, I'm starting using the symbolic toolbox but I have some difficulties.
I wrote this quadratic equation in symbolic form:
syms x y a1 b1 c1 d1 e1 f1
a = d1*y^2 + (e1 + b1*x)*y + a1*x^2 + c1*x + f1
then I tried to solve it:
ht=matlabFunction(a)
eqn = d1.*y.^2+(e1+b1.*x).*y+(a1.*x.^2+c1.*x+f1) == 0
S = solve(eqn, y)
I got what I expected from the formula
[-(e1 + b1*x - sqrt(b1^2*x^2 + 2*b1*e1*x + e1^2 - 4*a1*d1*x^2 - 4*c1*d1*x - 4*d1*f1))/(2*d1); -(e1 + b1*x + sqrt(b1^2*x^2 + 2*b1*e1*x + e1^2 - 4*a1*d1*x^2 - 4*c1*d1*x - 4*d1*f1))/(2*d1)]
However I don't know how to get the numerical real solutions.
I know the numerical values for the coeffcients a1, b1, c1, d1, e1, f1.
I tried to write the equation in this way:
syms x y
a = d1*y^2 + (e1 + b1*x)*y + a1*x^2 + c1*x + f1
ht=matlabFunction(a)
eqn = d1.*y.^2+(e1+b1.*x).*y+(a1.*x.^2+c1.*x+f1) == 0
S = solve(eqn, y, 'Real', true)
but the formula appears in the same form, with numbers in the places of the coefficients but with no solutions.
Can someone help me please.
Thank you very much in advance.
Laura
  2 commentaires
KSSV
KSSV le 17 Juin 2021
Read about subs. Did you define the values of those coefficients? Show us the full code which you tried.
laura bagnale
laura bagnale le 17 Juin 2021
Modifié(e) : Walter Roberson le 19 Juin 2021
Thank you a lot KSSV for your quick reply! I will try with subs as you suggested.
Yes, I defined the coefficients.
This is the part of the code regarding my question, the previous one is very long. I obtained pcell and qcell by using poly22 to interpolate 5 points with a surface in space.
[p00, p10, p01, p20, p11, p02] = pcell{:}
[q00, q10, q01, q20, q11, q02] = qcell{:}
format short
a1 = p20.*q11.*2.0-p11.*q20.*2.0
b1 = p20.*q20.*4.0-p02.*q20.*4.0
c1 = p10.*q11-p01.*q20.*2.0-p11.*q10+p20.*q01.*2.0
d1 = p11.*q20.*2.0-p02.*q11.*2.0
e1 = p11.*q01-p02.*q10.*2.0-p01.*q11+p10.*q20.*2.0
f1 = p10.*q01-p01.*q10
a1 = -0.0870
b1 = -0.2519
c1 = -0.0847
d1 = -0.0495
e1 = -0.0386
f1 = -0.0081
g = @(x,y) a1.*x.^2 + b1.*x.*y + c1.*x + d1.*y.^2 + e1.*y + f1
syms x y a1 b1 c1 d1 e1 f1
eqn = a1.*x.^2 + b1.*x.*y + c1.*x + d1.*y.^2 + e1.*y + f1
a = collect(eqn, y)
ht=matlabFunction(a)
eqn = d1.*y.^2+(e1+b1.*x).*y+(a1.*x.^2+c1.*x+f1) == 0
S = solve(eqn, y)
syms x y a1 b1 c1 d1 e1 f1
eqn = a1.*x.^2 + b1.*x.*y + c1.*x + d1.*y.^2 + e1.*y + f1
a = collect(eqn, y)
ht=matlabFunction(a)
eqn = d1.*y.^2+(e1+b1.*x).*y+(a1.*x.^2+c1.*x+f1) == 0
S = solve(eqn, y)
Thank you very much for your help and support.
Laura

Connectez-vous pour commenter.

Réponse acceptée

Stephan
Stephan le 17 Juin 2021
Modifié(e) : Stephan le 17 Juin 2021
You could use symbolic functions:
syms y(a,b,x)
y(a,b,x) = a*x^2 - b*x
y(a, b, x) = 
% Calculate values for a=1, b=2 and x in a range from 1:4 with stepwide 0.5
result_symbolic = y(1,2,1:0.5:4)
result_symbolic = 
if you want that numbers (still symbolic) use double
result_numeric = double(result_symbolic)
result_numeric = 1×7
-1.0000 -0.7500 0 1.2500 3.0000 5.2500 8.0000
  2 commentaires
laura bagnale
laura bagnale le 17 Juin 2021
Thank you very much Stephan, for your help.
I am not sure how to adapt your suggestion to my case since I have a quadratic equation, but I will try to do my best!
Thanks again!
Laura
laura bagnale
laura bagnale le 17 Juin 2021
I mean my difficulty is that the function is quadratic with 2 variables. I didn't find something similar from the MathWorks.
Thanks!

Connectez-vous pour commenter.

Plus de réponses (0)

Produits


Version

R2021a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by