3D/2D matrix multiplication without using a loop
16 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Pascal Wielsch
le 17 Juin 2021
Commenté : Matt J
le 18 Juin 2021
Hello dear MATLAB community,
again I have a question to improve the efficiency of my code, by getting rid of the use of loops. Since my programming skills come from using LabVIEW, I often have a harder time using matrix operations instead of loops.
Let me first explain you what I want to do. I have a 3D data matrix "A(i,j,k)", that I want to multiply together with a sensitivity matrix "S" (values stay equal) to get forces and do a conversion from polar to cartesian. I want to do this calculation/conversion for every sub-matrix "A(:,:,k)" to calculate the single forces in the cartesian system. Afterwards I want to calculate the total resulting forces of all sub-matrices and convert them back in a polar system.
The matrices and it's dimension can differ:
- S_r & S_phi are not always square matrices
- Row nr. of A is always equal to col nr. of S_r/S_phi
- Col nr. of A is always equal to length of phipoints
% Input data matrix (3D): A(i,j,k)
A(:,:,1) = [-0.0468 -0.0652 0.2746 0.5272 0.2373 -0.2142 -0.5973 -0.1169
0.0633 0.6673 0.6416 0.3491 -0.0652 -0.0025 -0.8464 -0.7607
-0.0026 0.0000 -0.0373 -0.4378 -0.1612 0.2293 0.2458 0.1656
0.3124 0.2472 0.0048 -0.5034 -0.5051 -0.0434 0.1734 0.3376
-0.0815 -0.4423 0.0308 0.1411 0.1260 0.1881 0.0696 -0.0328];
A(:,:,2) = [-0.0468 -0.0652 0.2746 0.5272 0.2373 -0.2142 -0.5973 -0.1169
0.0633 0.6673 0.6416 0.3491 -0.0652 -0.0025 -0.8464 -0.7607
-0.0026 0.0000 -0.0373 -0.4378 -0.1612 0.2293 0.2458 0.1656
0.0696 0.1881 0.1260 0.1411 0.0308 -0.4423 -0.0815 -0.0328
0.1734 -0.0434 -0.5051 -0.5034 0.0048 0.2472 0.3124 0.3376];
A(:,:,3) = [-0.0468 -0.0652 0.2746 0.5272 0.2373 -0.2142 -0.5973 -0.1169
0.0633 0.6673 0.6416 0.3491 -0.0652 -0.0025 -0.8464 -0.7607
0.1734 -0.0434 -0.5051 -0.5034 0.0048 0.2472 0.3124 0.3376
0.2458 0.2293 -0.1612 -0.4378 -0.0373 0.0000 -0.0026 0.1656
-0.0815 -0.4423 0.0308 0.1411 0.1260 0.1881 0.0696 -0.0328];
% points of all to be calculated segments (index j)
phipoints = 0:2*pi/8:2*pi-2*pi/8;
% Sensitivity matrix: amplitude and phase
S_r = [ 0.0317 0.0378 0.0344 0.0394 0.0333;...
0.0331 0.0410 0.0380 0.0433 0.0375;...
0.0326 0.0415 0.0388 0.0443 0.0393;...
0.0296 0.0386 0.0360 0.0417 0.0383;...
0.0247 0.0334 0.0307 0.0366 0.0354];
S_phi = [ 0 0 0 0 0;...
0 0 0 0 0;...
0 0 0 0 0;...
0 0 0 0 0;...
0 0 0 0 0];
% To be calculate equation for every single sub-matrix A(:,:,k); only for
% documentation; code must be executed using loops
% pol2cart(S_phi+phipoints,S_r*A(:,:,k))
I can calculate this using loops, but my problem is that I have to do this calculation for many sub-matrices (dimension "k" can be up to millions). My current version (see below) takes way to much time, so I'm looking for an alternative way.
%% Current calculation using loop
% Calculation: single forces in cartesian system (X & Y)
for k = 1:size(A,3)
for i = 1:size(A,1)
[Fx(:,:,i,k),Fy(:,:,i,k)] = pol2cart(S_phi(:,i)+phipoints,S_r(:,i)*A(i,:,k));
end
end
% Calculation: resulting forces in X & Y
% - 1st: sum of single forces from all rows (2nd index) of Fx/Fy
% - 2nd: sum of forces of 3rd index of Fx/Fy
Fx_res = sum(sum(Fx,2),3);
Fy_res = sum(sum(Fy,2),3);
% Calculation: total resulting force
[F_res_phi,F_res] = cart2pol(Fx_res,Fy_res); % Conversion: cartesian to polar
Thanks in advance and best regards,
Pascal
5 commentaires
J. Alex Lee
le 18 Juin 2021
It's not even clear what "S_phi + phipoints" is supposed to mean whenever S_phi [=] 5xL where L~=5.
Réponse acceptée
Pascal Wielsch
le 18 Juin 2021
4 commentaires
J. Alex Lee
le 18 Juin 2021
Well, actually no, the results used to be 5x8xN (not Lx8xN), regardless of L. It doesn't really make sense to me what you mean by S_phi+phipoints when L~=5.
But anyway glad if you've got what you want in the end.
Matt J
le 18 Juin 2021
Note that in recent Matlab, the repmat's should really not be needed:
S_phi_ForCalc = reshape(S_phi,5,1,I);
S_r_ForCalc = reshape(S_r,5,1,I);
Plus de réponses (2)
J. Alex Lee
le 17 Juin 2021
I found this: pagemtimes()
s = rand(5,5);
x = rand(5,8,100000);
tic
y = pagemtimes(s,x);
toc
tic
z = nan(size(x));
for k = 1:size(x,3)
z(:,:,k) = s*x(:,:,k);
end
toc
err = sum(abs(y-z),'all')
2 commentaires
Matt J
le 17 Juin 2021
Modifié(e) : Matt J
le 17 Juin 2021
Assuming S_r will always be square,
B=reshape( S_r*A(:,:), size(A)); %B(:,:,k)=S_r*A(:,:,k)
2 commentaires
J. Alex Lee
le 18 Juin 2021
Modifié(e) : J. Alex Lee
le 18 Juin 2021
You would just need to re-figure the size, but this should still work, it's neat!
clc;
clear;
L = 6;
N = 100000;
S_r = rand(5,L);
A = rand(L,8,N);
tic
x = pagemtimes(S_r,A);
toc
tic
y = reshape(S_r*A(:,:),[5,8,N]);
toc
tic
z = nan(5,8,N);
for k = 1:size(A,3)
z(:,:,k) = S_r*A(:,:,k);
end
toc
err = sum(abs(x-y),'all')
err = sum(abs(y-z),'all')
Voir également
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!