Can Mathlab solve this

1 vue (au cours des 30 derniers jours)
rob
rob le 3 Sep 2013
Commenté : Walter Roberson le 17 Sep 2022
Can Mathlab solve this
x1^2 +2.x1 - 2.x2^2 -5.x2 =5
2.x1^2 -3.x1 +x2^2 +3.x2 =19
  2 commentaires
Walter Roberson
Walter Roberson le 3 Sep 2013
You know that has four solutions, right?
Walter Roberson
Walter Roberson le 3 Sep 2013
Please read the guide to tags and retag this question.

Connectez-vous pour commenter.

Réponses (4)

Thomas
Thomas le 3 Sep 2013
Modifié(e) : Thomas le 3 Sep 2013
Yes, look in the symbolic math toolbox http://www.mathworks.com/help/symbolic/solve.html
Go to the bottom of the page for examples

Shashank Prasanna
Shashank Prasanna le 3 Sep 2013
You can solve a system of nonlinear equations using FSOLVE:
This will yield numerical solutions for x1 and x2
  3 commentaires
rob
rob le 3 Sep 2013
fsolve is all numerical not algabraic
Walter Roberson
Walter Roberson le 3 Sep 2013
Correct, fsolve() is numeric not algebraic. However can you really make use of the algebraic solutions? For example one of the four solutions to the above system has x1 be
-349/140 + (1/5040) * (4860 * (112706532 + 2940 * 1239703701^(1/2))^(1/3) - 6 * (112706532 + 2940 * 1239703701^(1/2))^(2/3) - 754344) / (112706532 + 2940 * 1239703701^(1/2))^(1/3) - (1/90720) * ((4860 * (112706532 + 2940 * 1239703701^(1/2))^(1/3) - 6 * (112706532 + 2940 * 1239703701^(1/2))^(2/3) - 754344)/(112706532 + 2940 * 1239703701^(1/2))^(1/3))^(1/2) * 6^(1/2) * 36^(1/2) * 2^(1/2) * (((810* (112706532 + 2940 * 1239703701^(1/2))^(1/3) + 18^(1/3) * ((9392211 + 245 * 1239703701^(1/2))^2)^(1/3) + 62862) * ((4860 * (112706532 + 2940 * 1239703701^(1/2))^(1/3) - 6 * (112706532 + 2940 * 1239703701^(1/2))^(2/3) - 754344) / (112706532 + 2940 * 1239703701^(1/2))^(1/3))^(1/2) + 1764 * (112706532 + 2940 * 1239703701^(1/2))^(1/3)) * 18^(1/3) * ((112706532 + 2940 * 1239703701^(1/2))^(1/3) / (810 * (112706532 + 2940 * 1239703701^(1/2))^(1/3) - (112706532 + 2940 * 1239703701^(1/2))^(2/3) - 125724))^(1/2) * ((9392211 + 245 * 1239703701^(1/2))^2)^(1/3) * 6^(1/2) / (9392211 + 245 * 1239703701^(1/2)))^(1/2) + (1/30240) * (1620 * (112706532 + 2940 * 1239703701^(1/2))^(1/3) * ((4860 * (112706532 + 2940 * 1239703701^(1/2))^(1/3) - 6 * (112706532 + 2940 * 1239703701^(1/2))^(2/3) - 754344) / (112706532 + 2940 * 1239703701^(1/2))^(1/3))^(1/2) + 2 * ((4860 * (112706532 + 2940 * 1239703701^(1/2))^(1/3) - 6 * (112706532 + 2940 * 1239703701^(1/2))^(2/3) - 754344) / (112706532 + 2940 * 1239703701^(1/2))^(1/3))^(1/2) * 18^(1/3) * ((9392211 + 245 * 1239703701^(1/2))^2)^(1/3) + 125724 * ((4860 * (112706532 + 2940 * 1239703701^(1/2))^(1/3) - 6 * (112706532 + 2940 * 1239703701^(1/2))^(2/3) - 754344) / (112706532 + 2940 * 1239703701^(1/2))^(1/3))^(1/2) + 3528 * (112706532 + 2940 * 1239703701^(1/2))^(1/3)) * 6^(1/2) * ((112706532 + 2940 * 1239703701^(1/2))^(1/3) / (810 * (112706532 + 2940 * 1239703701^(1/2))^(1/3) - (112706532 + 2940 * 1239703701^(1/2))^(2/3) - 125724))^(1/2) * 18^(1/3) * ((9392211 + 245 * 1239703701^(1/2))^2)^(1/3) / (9392211 + 245 * 1239703701^(1/2))
Would your work seriously be affected if all those 112706532 where 112706533 instead? (That would make a difference in the 6th decimal place.)

Connectez-vous pour commenter.


Roger Stafford
Roger Stafford le 3 Sep 2013
It is useful to know how to solve such equations by hand rather than always depending on matlab. The trick is to eliminate either the x1^2 term or the x2^2 term by combining the equations appropriately. If we double the second equation and then add the equations, we get
5*x1^2-4*x1+x2 = 43
which can be solved for x2
x2 = -5*x1^2+4*x1+43
You can then substitute this value of x2 into either one of the original equations and get a fourth degree polynomial equation in x1. The four roots of this can be obtained with matlab's 'roots' program (we need matlab after all) and then corresponding values of x2 from these with the above equation.
  7 commentaires
rob
rob le 4 Sep 2013
I dont understand exactly I think lineair dependence is solvable like a +b +c =3 2a +2b - c =5 -a +b -3c = 9
but i was investigating only where the a b and c have a quadratic So a thousend by a thousend has a thousend unkowns of a and a^2 for all i know this is unsolvable and only in fsolve with numerical math.
Walter Roberson
Walter Roberson le 4 Sep 2013
Modifié(e) : Walter Roberson le 4 Sep 2013
Suppose you had
a = b^2 + d
b = c^2
c = d^2
then a = d^8 + d, and that has no closed-form solution for d in terms of a. Therefore the generalized 3 x 3 or larger is not always resolvable to algebraic solutions. However, if the forms of the equations are constrained, so that one was not working with the generalized form, then it might be possible to find algebraic solutions; that would vary with the exact constraints.

Connectez-vous pour commenter.


Edwin
Edwin le 17 Sep 2022
solve('6/(1-x^2) =5/(1+x) - 3/(1-x)')
Check for incorrect argument data type or missing argument in call to function 'solve'.
  1 commentaire
Walter Roberson
Walter Roberson le 17 Sep 2022
syms x
solve(6/(1-x^2) == 5/(1+x) - 3/(1-x))
ans = 
Historically, solve() used to support character vectors like you show, but that changed around R2017b or so.

Connectez-vous pour commenter.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by