Enclosing Boundary - for blobs
8 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Conor O'Keeffe
le 3 Juil 2021
Commenté : Conor O'Keeffe
le 4 Juil 2021
Hi all
Is it possible to get the boundary central more dense region - ignoring the blobs on the side
6 commentaires
Réponse acceptée
Matt J
le 3 Juil 2021
Modifié(e) : Matt J
le 3 Juil 2021
Perhaps as follows,
BW0=load('Image.mat').BW;
BW= imclose(BW0,strel('disk',3));
BW = imfill( BW ,'holes') ;
BW=bwareafilt( BW,1);
boundary=fliplr( cell2mat( bwboundaries( BW ) ) );
imshow(insertMarker(double(BW0),boundary,'o','Size',1,'Color','m'));
0 commentaires
Plus de réponses (1)
DGM
le 3 Juil 2021
Modifié(e) : DGM
le 4 Juil 2021
I'll throw this out there. I'm assuming that the goal here is density-dependent (linear) mask constriction. On that assumption, I'm avoiding erosion and using an averaging filter and thresholding. It works, but it would likely require adjustment, considering I don't know what the particular limits are or what other images will look like.
% parameters
frad = 15;
masklevel = 0.1;
outlevel = 0.18;
% flattened, binarized image
inpict = rgb2gray(imread('capture.jpg'))>128;
% if you want to filter by local density, maybe use an avg filter
wpict = imfilter(double(inpict),fspecial('disk',frad));
% first pass to get rid of stray exterior points
mask = double(bwareafilt(wpict>masklevel,1));
wpict = wpict.*mask;
% second pass to tighten group following density
wpict = wpict>outlevel;
% as opposed to erosion which follows envelope
%wpict = imerode(wpict,strel('disk',10));
% for viewing, i'm just going to slap together a weighted mean
% you can use whatever you want. wpict is just a binary mask like any other.
k = 0.3;
comp = inpict*k + wpict*(1-k);
imshow(comp)

0 commentaires
Voir également
Catégories
En savoir plus sur Computer Vision with Simulink dans Help Center et File Exchange
Produits
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!
