Sketch the graph using matlab

13 vues (au cours des 30 derniers jours)
Ta Duc
Ta Duc le 5 Juil 2021
Commenté : Ta Duc le 5 Juil 2021
Draw the graph of f and its tangent plane at the given point. (Use your computer algebra system both to compute the partial derivatives and to graph the surface and its tangent plane.) Then zoom in until the surface and the tangent plane become indistinguishable. f(x, y)=[xy sin(x-y)]/[1+x^2+y^2], and the given point(1, 1, 0)
  2 commentaires
KSSV
KSSV le 5 Juil 2021
What have you attempted?
Ta Duc
Ta Duc le 5 Juil 2021
I’ve just finished my hand-written solving but i’m not good at matlab so i need you to solve the problem by using matlab. Thank u so much🥰

Connectez-vous pour commenter.

Réponse acceptée

Scott MacKenzie
Scott MacKenzie le 5 Juil 2021
Modifié(e) : Scott MacKenzie le 5 Juil 2021
I think this is what you are looking for. NOTE: My script is based on code in Find Tangent Plane to Surface which you should review for further details.
% function domain
x = -3:0.25:3;
y = -3:0.25:3;
% your function
f = @(x,y) (x .* y .* sin(x-y)) ./ (1 + x.^2 + y.^2);
% use gradient to find partial derivatives of f.
[xx, yy] = meshgrid(x,y);
[fx, fy] = gradient(f(xx,yy), 0.25);
% find tangent plane at query point of interest
xq = 1;
yq = 1;
t = (xx == xq) & (yy == yq);
indt = find(t);
fxq = fx(indt);
fyq = fy(indt);
% plot the function over domain
surf(xx,yy,f(xx,yy),'EdgeAlpha',0.7,'FaceAlpha',0.9)
hold on;
xlabel('X'); ylabel('Y'); zlabel('Z');
% tangent plane equation and points
z = @(x,y) f(xq,yq) + fxq*(x-xq) + fyq*(y-yq);
zz = z(xx,yy);
% plot tangent plain and point-of-intersection
surf(xx,yy,zz);
plot3(1,1,f(1,1), 'or', 'markerfacecolor', 'r', 'markersize', 5);
  1 commentaire
Ta Duc
Ta Duc le 5 Juil 2021
@Scott MacKenzie Thank u so much. I'm very appriciate with your code. <3

Connectez-vous pour commenter.

Plus de réponses (0)

Catégories

En savoir plus sur Programming dans Help Center et File Exchange

Produits


Version

R2017b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by