Can a symmetric matrix AA^T be computed using matrix-vector operation?
1 vue (au cours des 30 derniers jours)
Afficher commentaires plus anciens
I am interested in computing which is a symmetric matrix where now there's nothing special about A and in the worst case all of its entries are non-zero. I have an idea in my mind to calculate using level-2 BLAS operation.
First the diagonal entries of C is nothing but the j-th row of A multiplied by the transpose of the j-th row of A so it should be like this:
C(j,j)=A(j,:)*A(j,:)';
Next, I will compute the last entries of C that is to say I will compute the lower triangular part of C afterwards I will say that the upper triangular part is equal to the lower triangular part due to symmetry. And this is where my question arises. Can I compute the lower triangular part using matrix-vector operation while avoiding unecessary multiplication such as multiplying elements located at the upper triangular of A?
From what I reached I have reached the following expression :
C(j+1:n,j)=A(j+1:n,j)*A(:,j);
C(j,j+1:n)=C(j+1:n,j);
The issue is that this is a vector-vector multiplication (level-1 BLAS). I would hope for some context on whether level-2 BLAS is possible
2 commentaires
Réponses (0)
Voir également
Catégories
En savoir plus sur Data Distribution Plots dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!