 
 Can we tune the filter size and number of filters in a CNN automatically using Bayesian optimization?
    4 vues (au cours des 30 derniers jours)
  
       Afficher commentaires plus anciens
    
    Jyoti Nautiyal
 le 8 Juil 2021
  
    
    
    
    
    Réponse apportée : Hrishikesh Borate
    
 le 15 Juil 2021
            what are all the hyper-parameters that can be tuned using Bayesian optimization in experiment manager?
0 commentaires
Réponse acceptée
  Hrishikesh Borate
    
 le 15 Juil 2021
        Hi,  
The hyperparameters to be tuned can be added in the Experiment Manager. In the code file, which contains the network definition, these hyperparameters can be accessed via the params variable, which is a structure with fields from the Experiment Manager hyperparameter table. These hyperparameters should be declared in the network definition code before starting the process of hyperparameter tuning.  
For example, to tune the filter size hyperparameter in this example, first add this hyperparameter in the Experiment Manager. Define the Range, Type, Transform for this hyperparameter.  
 
  Now, use this hyperparameter in the network definition (defined in the BayesOptExperiment_setup1.mlx file). 
convBlock(params.FilterSize,numF,params.SectionDepth) 
After all the hyperparameters to be tuned are added in both, the Experiment Manager and in the code file, the hyperparameter tuning process can commence.
For more information, refer to the Tune Experiment Hyperparameters by Using Bayesian Optimization documentation. 
0 commentaires
Plus de réponses (0)
Voir également
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!

