What parameters are optimized by default when the crossval-on name-value pair option is used in the fitrensemble function?
1 vue (au cours des 30 derniers jours)
Afficher commentaires plus anciens
For eg, when the following command is used, what parameters/hyperparamters are validated by default when the crossval-on name-value pair option is used in the fitrensemble function?
rng(1);
t = templateTree('MaxNumSplits',1);
Mdl = fitrensemble(X,MPG,'Learners',t,'CrossVal','on');
0 commentaires
Réponses (1)
Aditya Patil
le 12 Juil 2021
Cross validation splits the data into K partitions. Then it trains the models on the K permutations of (K - 1) sets and validates it on the remaining 1 set. For example, if you use 10-fold validation, it will train on 9 different permutations of the sets, each having 9 sets for training, and 1 for validation.
As such, there is no dependence on the parameters of the model.
0 commentaires
Voir également
Catégories
En savoir plus sur Regression Tree Ensembles dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!