I'm trying to modify the code to plot the error E for n=1,2,3... I want to use for loop but I'm not sure how to use it. Please help
1 vue (au cours des 30 derniers jours)
Afficher commentaires plus anciens
ebtisam almehmadi
le 19 Juil 2021
Commenté : ebtisam almehmadi
le 23 Juil 2021
clear
n = 3; % the order of the polynomial
a = 2.0; % left end of the interval
b = 3.0; % right end of the interval
h = (b - a)/n; % interpolation grid size
t = a:h:b; % interpolation points
f = 1./t; % f(x) = 1./x, This is the function evaluated at interpolation points
%%%% pn(x) = \sum f(t_i)l_i(x)
hh = 0.01; % grid to plot the function both f and p
x = a:hh:b;
fexact = 1./x; %exact function f at x
l = zeros(n+1, length(x)); %%%% l(1,:): l_0(x), ..., l(n+1): l_n(x)
nn = ones(n+1, length(x));
d = ones(n + 1, length(x));
for i = 1:n+1
for j = 1:length(x)
nn(i,j) = 1;
d(i,j) = 1;
for k = 1:n+1
if i ~= k
nn(i,j) = nn(i,j) * (x(j) - t(k));
d(i,j) = d(i,j) * (t(i) - t(k));
end
end
l(i,j) = nn(i,j)/d(i,j);
end
end
fapp = zeros(length(x),1);
for j = 1:length(x)
for i=1:n+1
fapp(j) = fapp(j) + f(i)*l(i,j);
end
end
En = 0;
Ed = 0;
for i = 1:length(x)
Ed = Ed + fexact(i)^2;
En = En + (fexact(i) - fapp(i))^2;
end
Ed = sqrt(Ed);
En = sqrt(En);
E = En/Ed;
display(E)
plot(x,fexact,'b*-')
hold on
plot(x,fapp,'ro-' )
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/691383/image.jpeg)
0 commentaires
Réponse acceptée
Hrishikesh Borate
le 23 Juil 2021
Hi,
The following code demonstrates the plot of E for n = 1 to 10.
clear
e = [];
figure;
subplot(2,1,1);
ax1 = gca;
subplot(2,1,2);
ax2 = gca;
for n=1:10
% n = 3; % the order of the polynomial
a = 2.0; % left end of the interval
b = 3.0; % right end of the interval
h = (b - a)/n; % interpolation grid size
t = a:h:b; % interpolation points
f = 1./t; % f(x) = 1./x, This is the function evaluated at interpolation points
%%%% pn(x) = \sum f(t_i)l_i(x)
hh = 0.01; % grid to plot the function both f and p
x = a:hh:b;
fexact = 1./x; %exact function f at x
l = zeros(n+1, length(x)); %%%% l(1,:): l_0(x), ..., l(n+1): l_n(x)
nn = ones(n+1, length(x));
d = ones(n + 1, length(x));
for i = 1:n+1
for j = 1:length(x)
nn(i,j) = 1;
d(i,j) = 1;
for k = 1:n+1
if i ~= k
nn(i,j) = nn(i,j) * (x(j) - t(k));
d(i,j) = d(i,j) * (t(i) - t(k));
end
end
l(i,j) = nn(i,j)/d(i,j);
end
end
fapp = zeros(length(x),1);
for j = 1:length(x)
for i=1:n+1
fapp(j) = fapp(j) + f(i)*l(i,j);
end
end
En = 0;
Ed = 0;
for i = 1:length(x)
Ed = Ed + fexact(i)^2;
En = En + (fexact(i) - fapp(i))^2;
end
Ed = sqrt(Ed);
En = sqrt(En);
E = En/Ed;
e = [e;E];
plot(ax1,e);
plot(ax2,x,fexact,'b*-')
hold on
plot(ax2,x,fapp,'ro-' )
hold off
end
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Lifting dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!