I want to modify the code to plot the Lagrange polynomial interpolation with Chebyshev points. Map the n+ 1 Chebyshev interpolation points from [-1,1] to [2,3]
2 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
clear
n = 3; % the order of the polynomial
a = 2.0; % left end of the interval
b = 3.0; % right end of the interval
h = (b - a)/n; % interpolation grid size
t = a:h:b; % interpolation points
f = 1./t; % f(x) = 1./x, This is the function evaluated at interpolation points
%%%% pn(x) = \sum f(t_i)l_i(x)
hh = 0.01; % grid to plot the function both f and p
x = a:hh:b;
fexact = 1./x; %exact function f at x
l = zeros(n+1, length(x)); %%%% l(1,:): l_0(x), ..., l(n+1): l_n(x)
nn = ones(n+1, length(x));
d = ones(n + 1, length(x));
for i = 1:n+1
for j = 1:length(x)
nn(i,j) = 1;
d(i,j) = 1;
for k = 1:n+1
if i ~= k
nn(i,j) = nn(i,j) * (x(j) - t(k));
d(i,j) = d(i,j) * (t(i) - t(k));
end
end
l(i,j) = nn(i,j)/d(i,j);
end
end
fapp = zeros(length(x),1);
for j = 1:length(x)
for i=1:n+1
fapp(j) = fapp(j) + f(i)*l(i,j);
end
end
En = 0;
Ed = 0;
for i = 1:length(x)
Ed = Ed + fexact(i)^2;
En = En + (fexact(i) - fapp(i))^2;
end
Ed = sqrt(Ed);
En = sqrt(En);
E = En/Ed;
display(E)
plot(x,fexact,'b*-')
hold on
plot(x,fapp,'ro-' )
Réponses (1)
Abhinaya Kennedy
le 5 Juin 2024
Hi Ebtisam,
To use Chebyshev points, replace the line "t = a:h:b;" with this:
t_cheb = cos(linspace(0, pi, n+1));
t = (a + b)/2 + (b - a)/2 * t_cheb;
This generates Chebyshev points in [-1, 1] and maps them to the interval [2, 3]. The rest of the code remains unchanged.
0 commentaires
Voir également
Catégories
En savoir plus sur Polynomials dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!