2D ODE with constant? how to solve

3 vues (au cours des 30 derniers jours)
mays rashad
mays rashad le 4 Août 2021

Réponse acceptée

Sulaymon Eshkabilov
Sulaymon Eshkabilov le 4 Août 2021
Most parts of your code is ok, but within the loop, you have overlooked sth and thus, you final solutions are not quite accurate. Here is ODE45 simulation which can be compared with your simulation results.
ICs=[0.6;0.6];
a=0.10;
b=10;
t=[0,60];
F = @(t, z)([a-z(1)+z(1).^2*z(2);b-z(1).^2*z(2)]);
OPTs = odeset('reltol', 1e-6, 'abstol', 1e-9);
[time, z]=ode45(F, t, ICs, OPTs);
figure(2)
plot(time,z(:,1),'b',time,z(:,2),'r')
xlabel('time')
ylabel('x(t) y(t)')
legend('x(t)', 'y(t)', 'location', 'best')
title('Schnackenberg eqn simulation'), xlim([0, 5])
figure(1)
plot(z(:,1),z(:,2),'k')
title('Simulation using ODE45'), grid on
xlabel('x(t)')
ylabel('y(t)')

Plus de réponses (1)

Sulaymon Eshkabilov
Sulaymon Eshkabilov le 4 Août 2021
Use odex (ode23, ode45, ode113, etc.) solvers. See this doc how to employ them in your exercise: https://www.mathworks.com/help/matlab/ref/ode45.html?searchHighlight=ode45&s_tid=srchtitle
  1 commentaire
mays rashad
mays rashad le 4 Août 2021
Is this solution correct?
%x'=a-x+x^2y y'=b-x^2y
clear all,close all, clc
x(1)=0.6;
y(1)=0.6;
a=0.10;
b=10;
h=0.02;
t=0:h:60;
for i=1:(length(t)-1)
k1=h*(a-x(i)+y(i)*x(i)^2);
L1=h*(b-y(i)*x(i)^2);
k2=h*(a-(x(i)+k1/2)+(y(i)+L1/2)*(x(i)^2+k1/2));
L2=h*(b-(y(i)+L1/2)*(x(i)^2+k1/2));
k3=h*(a-(x(i)+k2/2)+(y(i)+L2/2)*(x(i)^2+k2/2));
L3=h*(b-(y(i)+L2/2)*(x(i)^2+k2/2));
k4=h*(a-(x(i)+k3)+(y(i)+L3)*(x(i)^2+k3));
L4=h*(b-(y(i)+L3)*(x(i)^2+k3));
x(i+1)=x(i)+(k1+2*k2+2*k3+k4)*(h/6);
y(i+1)=y(i)+(L1+2*L2+2*L3+L4)*(h/6);
end
plot(t,x,'b',t,y,'r')
xlabel('time')
ylabel('x in blue and y in red')
figure
plot(x,y,'g')
title('2D figure(RK4)')
xlabel('X')
ylabel('Y')

Connectez-vous pour commenter.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by