Why am I not able to obtain the Fourier Transform of exponent expression using Symbolic math?
3 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Emmanuel J Rodriguez
le 6 Août 2021
Commenté : Emmanuel J Rodriguez
le 7 Août 2021
The answer should be a closed-form solution.
% Practice, Problem 7 from Kreyszig sec 10.10, p. 575
syms f(x)
f(x) = x*exp(-x);
f_FT = fourier(f(x))
% Doesn't find transform
assume(x>0)
f_FT_condition = fourier(f(x))
assume(x,'clear')
ans:
f_FT =
f_FT_condition =
0 commentaires
Réponse acceptée
Paul
le 6 Août 2021
Based on the assumption, I'm going to assume that f(x) = x*exp(-x) for x>=0 and f(x) = 0 for x < 0. In which case
syms f(x)
f(x) = x*exp(-x)*heaviside(x);
fourier(f(x))
If that's the expected result check out
doc heaviside
to understand why f(x) is defined that way.
3 commentaires
Paul
le 6 Août 2021
The scaling on the Fourier transform is arbitrary, but must be consistent with the scaling on the inverse transform. This scaling is controlled via sympref() (look at its doc page before you use it). The default is a scaling of 1 on the Fourier transform. But you can change that:
syms f(x)
f(x) = x*exp(-x)*heaviside(x);
sympref('FourierParameters',[1/(sqrt(2*sym(pi))) -1]);
fourier(f(x))
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Calculus dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!