how to triple Integrate this?
1 vue (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Saurabh Agarwal
le 7 Août 2021
Réponse apportée : Walter Roberson
le 8 Août 2021
clear
clc
D = 200000;
syms xi eta zeta
N(1) = (1/8)*(1-xi)*(1-eta)*(1-zeta);
N(2) = (1/8)*(1+xi)*(1-eta)*(1-zeta);
N(3) = (1/8)*(1+xi)*(1+eta)*(1-zeta);
N(4) = (1/8)*(1-xi)*(1+eta)*(1-zeta);
N(5) = (1/8)*(1-xi)*(1-eta)*(1+zeta);
N(6) = (1/8)*(1+xi)*(1-eta)*(1+zeta);
N(7) = (1/8)*(1+xi)*(1+eta)*(1+zeta);
N(8) = (1/8)*(1-xi)*(1+eta)*(1+zeta);
for i = 1:8
N_xi(i) = diff(N(i),xi);
N_eta(i) = diff(N(i),eta);
N_zeta(i) = diff(N(i),zeta);
end
% Nodes xi eta zeta
% 1 -1 -1 -1
% 2 1 -1 -1
% 3 1 1 -1
% 4 -1 1 -1
% 5 -1 -1 1
% 6 1 -1 1
% 7 1 1 1
% 8 -1 1 1
% x1_xi = (N_xi(1)*-1) + (N_xi(2)*1) + (N_xi(3)*1) + (N_xi(4)*-1) + (N_xi(5)*-1) + (N_xi(6)*1) + (N_xi(7)*1) + (N_xi(8)*-1);
% x1_eta = (N_eta(1)*-1) + (N_eta(2)*1) + (N_eta(3)*1) + (N_eta(4)*-1) + (N_eta(5)*-1) + (N_eta(6)*1) + (N_eta(7)*1) + (N_eta(8)*-1);
% x1_zeta = (N_zeta(1)*-1) + (N_zeta(2)*1) + (N_zeta(3)*1) + (N_zeta(4)*-1) + (N_zeta(5)*-1) + (N_zeta(6)*1) + (N_zeta(7)*1) + (N_zeta(8)*-1);
% x2_xi = (N_xi(1)*-1) + (N_xi(2)*-1) + (N_xi(3)*1) + (N_xi(4)*1) + (N_xi(5)*-1) + (N_xi(6)*-1) + (N_xi(7)*1) + (N_xi(8)*1);
% x2_eta = (N_eta(1)*-1) + (N_eta(2)*-1) + (N_eta(3)*1) + (N_eta(4)*1) + (N_eta(5)*-1) + (N_eta(6)*-1) + (N_eta(7)*1) + (N_eta(8)*1);
% x2_zeta = (N_zeta(1)*-1) + (N_zeta(2)*-1) + (N_zeta(3)*1) + (N_zeta(4)*1) + (N_zeta(5)*-1) + (N_zeta(6)*-1) + (N_zeta(7)*1) + (N_zeta(8)*1);
% x3_xi = (N_xi(1)*-1) + (N_xi(2)*-1) + (N_xi(3)*-1) + (N_xi(4)*-1) + (N_xi(5)*1) + (N_xi(6)*1) + (N_xi(7)*1) + (N_xi(8)*1);
% x3_eta = (N_eta(1)*-1) + (N_eta(2)*-1) + (N_eta(3)*-1) + (N_eta(4)*-1) + (N_eta(5)*1) + (N_eta(6)*1) + (N_eta(7)*1) + (N_eta(8)*1);
% x3_zeta = (N_zeta(1)*-1) + (N_zeta(2)*-1) + (N_zeta(3)*-1) + (N_zeta(4)*-1) + (N_zeta(5)*1) + (N_zeta(6)*1) + (N_zeta(7)*1) + (N_zeta(8)*1);
%
% J = [x1_xi x1_eta x1_zeta;x2_xi x2_eta x2_zeta;x3_xi x3_eta x3_zeta];
J = [1 0 0;0 1 0;0 0 1];
Inv_J = inv(J);
Det_J = det(J);
N_x = [Inv_J(1,1) * N_xi; Inv_J(2,2) * N_eta; Inv_J(3,3) * N_zeta];
N_x = [N_x(1,1) 0 0 N_x(1,2) 0 0 N_x(1,3) 0 0 N_x(1,4) 0 0 N_x(1,5) 0 0 N_x(1,6) 0 0 N_x(1,7) 0 0 N_x(1,8) 0 0;...
0 N_x(2,1) 0 0 N_x(2,2) 0 0 N_x(2,3) 0 0 N_x(2,4) 0 0 N_x(2,5) 0 0 N_x(2,6) 0 0 N_x(2,7) 0 0 N_x(2,8) 0;...
0 0 N_x(3,1) 0 0 N_x(3,2) 0 0 N_x(3,3) 0 0 N_x(3,4) 0 0 N_x(3,5) 0 0 N_x(3,6) 0 0 N_x(3,7) 0 0 N_x(3,8)];
K_ma = N_x.' * N_x;
for i = 1:24
for j = 1:24
K_mat(i,j) = @(xi,eta,zeta) K_ma(i,j);
K(i,j) = integral3(K_ma(i,j),-1,1,-1,1,-1,1);
end
end
0 commentaires
Réponse acceptée
Walter Roberson
le 8 Août 2021
clear
clc
D = 200000;
syms xi eta zeta
N(1) = (1/8)*(1-xi)*(1-eta)*(1-zeta);
N(2) = (1/8)*(1+xi)*(1-eta)*(1-zeta);
N(3) = (1/8)*(1+xi)*(1+eta)*(1-zeta);
N(4) = (1/8)*(1-xi)*(1+eta)*(1-zeta);
N(5) = (1/8)*(1-xi)*(1-eta)*(1+zeta);
N(6) = (1/8)*(1+xi)*(1-eta)*(1+zeta);
N(7) = (1/8)*(1+xi)*(1+eta)*(1+zeta);
N(8) = (1/8)*(1-xi)*(1+eta)*(1+zeta);
for i = 1:8
N_xi(i) = diff(N(i),xi);
N_eta(i) = diff(N(i),eta);
N_zeta(i) = diff(N(i),zeta);
end
% Nodes xi eta zeta
% 1 -1 -1 -1
% 2 1 -1 -1
% 3 1 1 -1
% 4 -1 1 -1
% 5 -1 -1 1
% 6 1 -1 1
% 7 1 1 1
% 8 -1 1 1
% x1_xi = (N_xi(1)*-1) + (N_xi(2)*1) + (N_xi(3)*1) + (N_xi(4)*-1) + (N_xi(5)*-1) + (N_xi(6)*1) + (N_xi(7)*1) + (N_xi(8)*-1);
% x1_eta = (N_eta(1)*-1) + (N_eta(2)*1) + (N_eta(3)*1) + (N_eta(4)*-1) + (N_eta(5)*-1) + (N_eta(6)*1) + (N_eta(7)*1) + (N_eta(8)*-1);
% x1_zeta = (N_zeta(1)*-1) + (N_zeta(2)*1) + (N_zeta(3)*1) + (N_zeta(4)*-1) + (N_zeta(5)*-1) + (N_zeta(6)*1) + (N_zeta(7)*1) + (N_zeta(8)*-1);
% x2_xi = (N_xi(1)*-1) + (N_xi(2)*-1) + (N_xi(3)*1) + (N_xi(4)*1) + (N_xi(5)*-1) + (N_xi(6)*-1) + (N_xi(7)*1) + (N_xi(8)*1);
% x2_eta = (N_eta(1)*-1) + (N_eta(2)*-1) + (N_eta(3)*1) + (N_eta(4)*1) + (N_eta(5)*-1) + (N_eta(6)*-1) + (N_eta(7)*1) + (N_eta(8)*1);
% x2_zeta = (N_zeta(1)*-1) + (N_zeta(2)*-1) + (N_zeta(3)*1) + (N_zeta(4)*1) + (N_zeta(5)*-1) + (N_zeta(6)*-1) + (N_zeta(7)*1) + (N_zeta(8)*1);
% x3_xi = (N_xi(1)*-1) + (N_xi(2)*-1) + (N_xi(3)*-1) + (N_xi(4)*-1) + (N_xi(5)*1) + (N_xi(6)*1) + (N_xi(7)*1) + (N_xi(8)*1);
% x3_eta = (N_eta(1)*-1) + (N_eta(2)*-1) + (N_eta(3)*-1) + (N_eta(4)*-1) + (N_eta(5)*1) + (N_eta(6)*1) + (N_eta(7)*1) + (N_eta(8)*1);
% x3_zeta = (N_zeta(1)*-1) + (N_zeta(2)*-1) + (N_zeta(3)*-1) + (N_zeta(4)*-1) + (N_zeta(5)*1) + (N_zeta(6)*1) + (N_zeta(7)*1) + (N_zeta(8)*1);
%
% J = [x1_xi x1_eta x1_zeta;x2_xi x2_eta x2_zeta;x3_xi x3_eta x3_zeta];
J = [1 0 0;0 1 0;0 0 1];
Inv_J = inv(J);
Det_J = det(J);
N_x = [Inv_J(1,1) * N_xi; Inv_J(2,2) * N_eta; Inv_J(3,3) * N_zeta];
N_x = [N_x(1,1) 0 0 N_x(1,2) 0 0 N_x(1,3) 0 0 N_x(1,4) 0 0 N_x(1,5) 0 0 N_x(1,6) 0 0 N_x(1,7) 0 0 N_x(1,8) 0 0;...
0 N_x(2,1) 0 0 N_x(2,2) 0 0 N_x(2,3) 0 0 N_x(2,4) 0 0 N_x(2,5) 0 0 N_x(2,6) 0 0 N_x(2,7) 0 0 N_x(2,8) 0;...
0 0 N_x(3,1) 0 0 N_x(3,2) 0 0 N_x(3,3) 0 0 N_x(3,4) 0 0 N_x(3,5) 0 0 N_x(3,6) 0 0 N_x(3,7) 0 0 N_x(3,8)];
K_ma = N_x.' * N_x;
K = int(int(int(K_ma,xi,-1,1),eta,-1,1),zeta,-1,1)
0 commentaires
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Linear Least Squares dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!