Accelerate nested bsxfun double loop?

5 vues (au cours des 30 derniers jours)
andrej
andrej le 7 Oct 2013
Modifié(e) : Matt J le 8 Oct 2013
I have a simple double loop that requires multiple 'repmat' tasks in each iteration. I'm currently using bsxfun to avoid repmats, but have found it to be only a little faster than repmat/elementwise multiplication.
Any suggestions on speeding this up?
n = 200;
U = rand(n);
M = zeros(n); % preallocate matrix
a = rand(1,n);
b = rand(1,n);
SZI = bsxfun(@times,a,b');
for j = 1 : n
j
for i = 1 : n
if i ~= j
plusvec = U(j,:).^2 - U(i,:).*U(j,:);
timesvec = U(i,:) - U(j,:);
M(i,j) = sum(sum(SZI.*(bsxfun(@plus,bsxfun(@times,U,timesvec),plusvec))));
end
end
end

Réponses (2)

Sean de Wolski
Sean de Wolski le 7 Oct 2013
Modifié(e) : Sean de Wolski le 7 Oct 2013
Usually two dimensional:
bsxfun(@times
Can be replaced with matrix multiplication:
SZC = b'*a;
isequal(SZC,SZI)
ans =
1
More Being a fan of "ez" speedups, I turned the outer for-loop into a parfor-loop:
With two for-loops:
timeit(@()A89455(200),0)
ans =
6.3238
With the outer loop being a parfor-loop with four local workers:
timeit(@()A89455(200),0)
ans =
3.7519
A89455 is your code in a function taking n as an input.

Matt J
Matt J le 7 Oct 2013
Modifié(e) : Matt J le 8 Oct 2013
Without loops:
tic;
a=a(:);
Ut=U.';
S=U*spdiags(a,0,n,n)*Ut;
S=bsxfun(@minus,diag(S).',S)*sum(b);
c=(b*U)*bsxfun(@times,Ut,a);
T=bsxfun(@minus,c(:),c);
M=S+T;
toc;
%Elapsed time is 0.002864 seconds.

Catégories

En savoir plus sur Loops and Conditional Statements dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by