construct wavelet function and its scaling function

2 vues (au cours des 30 derniers jours)
konoha
konoha le 14 Août 2021
Réponse apportée : konoha le 17 Août 2021
i am using the dilation equation to construct wavelet function and its scaling function. The process is simple, use Haar scaling and then do iteration. I successfully construct the scaling function. using the exact method and with different order of coefficients, i couldn't get the desire wavelet function.
%%
cons = [1+sqrt(3), 3+sqrt(3), 3-sqrt(3), 1-sqrt(3)]/4;
iters = 4;
f = ones(1,50);
points = 100;
length_f = 50;
for iter = 0:iters
step_size = points*2^(iter-1);
temp_t = 0:1/((2^iter)*points):4;
temp_f = zeros(size(temp_t));
for l = 0:3
temp_f(l*step_size+1:length_f+l*step_size) = cons(l+1)*f(1:length_f) + temp_f(l*step_size+1:length_f+l*step_size);
end
f = temp_f;
length_f = find(f==0, 1)-1;
plot(temp_t, f)
title("Daubechies 2 Scaling Function: iter", iter+1)
xlabel("t")
ylabel("\phi(t)")
pause(1)
end
%%
cons = [sqrt(3)-1, 3-sqrt(3), -3-sqrt(3), 1+sqrt(3)]/4;
iters = 5;
f = ones(1,50);
points = 100;
length_f = 50;
for iter = 0:iters
step_size = points*2^(iter-1);
temp_t = 0:1/((2^iter)*points):4;
temp_f = zeros(size(temp_t));
for l = 0:3
temp_f(l*step_size+1:length_f+l*step_size) = cons(l+1)*f(1:length_f) + temp_f(l*step_size+1:length_f+l*step_size);
end
f = temp_f;
length_f = find(f==0, 1)-1;
plot(temp_t, f)
title("Daubechies 2 Wavelet Function: iter", iter+1)
xlabel("t")
ylabel("\phi(t)")
pause(1)
end

Réponse acceptée

konoha
konoha le 17 Août 2021
cons_c = [1+sqrt(3), 3+sqrt(3), 3-sqrt(3), 1-sqrt(3)]/4;
cons_w = [-(sqrt(3)-1), 3-sqrt(3), -(3+sqrt(3)), 1+sqrt(3)]/4;
iters = 4;
f = ones(1,50);
points = 100;
length_f = 50;
for iter = 0:iters
step_size = points*2^(iter-1);
temp_t = 0:1/((2^iter)*points):4;
temp_cf = zeros(size(temp_t));
temp_wf = zeros(size(temp_t));
for l = 0:3
temp_cf(l*step_size+1:length_f+l*step_size) = cons_c(l+1)*f(1:length_f) +...
temp_cf(l*step_size+1:length_f+l*step_size);
end
f = temp_cf;
for l2 = 0:3
temp_wf(l2*step_size+1:length_f+l2*step_size) = cons_w(l2+1)*f(1:length_f) +...
temp_wf(l2*step_size+1:length_f+l2*step_size);
end
length_f = find(f==0, 1)-1;
subplot(2, 1, 1)
plot(temp_t, f)
title("Daubechies 2 Scaling Function: iter", iter+1)
xlabel("t")
ylabel("\phi(t)")
subplot(2, 1, 2)
plot(temp_t, temp_wf)
title("Daubechies 2 Wavelet Function: iter", iter+1)
xlabel("t")
ylabel("\psi(t)")
pause(1)
end

Plus de réponses (0)

Catégories

En savoir plus sur Continuous Wavelet Transforms dans Help Center et File Exchange

Produits


Version

R2020b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by