NAHL: a Neural network with an Augmented Hidden Layer

An interesting new architecture for artificial neural networks
242 téléchargements
Mise à jour 17 jan. 2023

Afficher la licence

****The current version of NAHL is able to adapt with both classification and regession****
Please read these papers carefuly :
Please cite our NAHL papers as:
[1] T. Berghout, M. Benbouzid, S. M. Muyeen, T. Bentrcia, and L.-H. Mouss, “Auto-NAHL: A Neural Network Approach for Condition-Based Maintenance of Complex Industrial Systems,” IEEE Access, vol. 9, pp. 152829–152840, 2021, doi: 10.1109/ACCESS.2021.3127084.
[2] T. Berghout and M. Benbouzid, “EL-NAHL: Exploring Labels Autoencoding in Augmented Hidden Layers of Feedforward Neural Networks for Cybersecurity in Smart Grids,” Reliab. Eng. Syst. Saf., p. 108680, Jun. 2022, doi: 10.1016/j.ress.2022.108680.
[3] T. Berghout, M. Benbouzid, Y. Amirat and G. Yao, "Lithium-ion Battery State of Health Prediction with a Robust Collaborative Augmented Hidden Layer Feedforward Neural Network Approach," in IEEE Transactions on Transportation Electrification, doi: 10.1109/TTE.2023.3237726.
Compatibilité avec les versions de MATLAB
Créé avec R2018b
Compatible avec toutes les versions
Plateformes compatibles
Windows macOS Linux

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Auto_NAHL_codes

Version Publié le Notes de version
2.4.0

adding more references

2.3.0

New references have been added.

2.2.0

New published papers references has been added.

2.1.0

-New activation function ReLU
-Tolerance problem fixed
-Fitness function is replaced with RMSE loss function
-Adapting with both regression and classification

2.0.0

New activation function ReLU
Tolerance problem fixed
Fitness function is replaced with RMSE loss function
Adapting with both regression and classification

1.1.0

Citation is updated

1.0.0