NAHL: a Neural network with an Augmented Hidden Layer
Version 2.4.0 (39,4 ko) par
BERGHOUT Tarek
An interesting new architecture for artificial neural networks
****The current version of NAHL is able to adapt with both classification and regession****
Please read these papers carefuly :
Please cite our NAHL papers as:
[1] T. Berghout, M. Benbouzid, S. M. Muyeen, T. Bentrcia, and L.-H. Mouss, “Auto-NAHL: A Neural Network Approach for Condition-Based Maintenance of Complex Industrial Systems,” IEEE Access, vol. 9, pp. 152829–152840, 2021, doi: 10.1109/ACCESS.2021.3127084.
[2] T. Berghout and M. Benbouzid, “EL-NAHL: Exploring Labels Autoencoding in Augmented Hidden Layers of Feedforward Neural Networks for Cybersecurity in Smart Grids,” Reliab. Eng. Syst. Saf., p. 108680, Jun. 2022, doi: 10.1016/j.ress.2022.108680.
[3] T. Berghout, M. Benbouzid, Y. Amirat and G. Yao, "Lithium-ion Battery State of Health Prediction with a Robust Collaborative Augmented Hidden Layer Feedforward Neural Network Approach," in IEEE Transactions on Transportation Electrification, doi: 10.1109/TTE.2023.3237726.
Compatibilité avec les versions de MATLAB
Créé avec
R2018b
Compatible avec toutes les versions
Plateformes compatibles
Windows macOS LinuxTags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Découvrir Live Editor
Créez des scripts avec du code, des résultats et du texte formaté dans un même document exécutable.
Auto_NAHL_codes
Version | Publié le | Notes de version | |
---|---|---|---|
2.4.0 | adding more references |
||
2.3.0 | New references have been added. |
||
2.2.0 | New published papers references has been added. |
||
2.1.0 | -New activation function ReLU
|
||
2.0.0 | New activation function ReLU
|
||
1.1.0 | Citation is updated |
||
1.0.0 |