Tutorial: Bayesian Optimization

1D and 2D black-box Bayesian optimization demonstration with visualizations.
606 téléchargements
Mise à jour 13 juil. 2022

Afficher la licence

This code shows a visualization of each iteration in Bayesian Optimization. MATLAB's fitrgp is used to fit the Gaussian process surrogate model, then the next sample is chosen using the Expected Improvement acquisition function. An exploitation-exploration parameter can be changed in the code. The code contains both 1D and 2D "black-box" functions for optimization.
References:
[1] Rasmussen and Williams (2006). "Gaussian Processes for Machine Learning," MIT Press.

Citation pour cette source

Karl Ezra Pilario (2026). Tutorial: Bayesian Optimization (https://fr.mathworks.com/matlabcentral/fileexchange/114950-tutorial-bayesian-optimization), MATLAB Central File Exchange. Extrait(e) le .

Compatibilité avec les versions de MATLAB
Créé avec R2022a
Compatible avec toutes les versions
Plateformes compatibles
Windows macOS Linux
Version Publié le Notes de version
1.0.0