Exponential regression with Type I censoring

Version 1.02 (4,09 ko) par Statovic
Fits exponential regression models using maximum likelihood estimation. Data may be subject to Type I censoring.
4 téléchargements
Mise à jour 22 juil. 2022

Afficher la licence

Given covariates X [n x p] and target T [n x 1], the function fits an exponential regression model:
T_i ~ Exp(theta_i) , i = 1, ..., n
theta_i = Exp(X*beta)
using maximum likelihood estimation. The covariate matrix X should not include a constant vector. Parameter estimates are obtained using Fisher scoring with each iteration solving a weighted least squares problem. The method allows for type I censoring with a fixed censoring cut-off point c > 0. To analyse censored data, you must pass a vector of censoring indicators delta [n x 1]. The vector delta can be omitted if data is fully observed. When delta = 1, the data point is fully observed; delta = 0 implies a censored data point. Only type I censoring is supported where the maximum follow-up time is the same for all participants.
An example of how to use the function (testfit.m) is included.

Citation pour cette source

Statovic (2024). Exponential regression with Type I censoring (https://www.mathworks.com/matlabcentral/fileexchange/115325-exponential-regression-with-type-i-censoring), MATLAB Central File Exchange. Récupéré le .

Compatibilité avec les versions de MATLAB
Créé avec R2022a
Compatible avec les versions R2022a et ultérieures
Plateformes compatibles
Windows macOS Linux

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Version Publié le Notes de version

-added more documentation


-fixed typos in the documentation