A deep learning approach to predict the number of k-barriers

MATLAB code for "A deep learning approach to predict the number of k-barriers for intrusion detection over a circular region using WSNs."
134 téléchargements
Mise à jour 26 août 2022
This file contains the MATLAB code for "A deep learning approach to predict the number of k-barriers for intrusion detection over a circular region using WSNs, 2022, Expert Systems with Applications."
For more information please refer to the following link;
If you need a full-text of this manuscript then please email to me (abhilash.iiserb@gmail.com) or you can request it through ResearchGate.
If you are using this code then please cite the following paper;
Singh, A., Amutha, J., Nagar, J., & Sharma, S. (2022). A deep learning approach to predict the number of k-barriers for intrusion detection over a circular region using wireless sensor networks. Expert Systems with Applications, 118588.
Additional references for further reading;
  1. Singh, A., Nagar, J., Sharma, S., & Kotiyal, V. (2021). A Gaussian process regression approach to predict the k-barrier coverage probability for intrusion detection in wireless sensor networks. Expert Systems with Applications, 172, 114603. https://doi.org/10.1016/j.eswa.2021.114603
  2. Singh, A., Amutha, J., Nagar, J., Sharma, S., & Lee, C. C. (2022). Lt-fs-id: Log-transformed feature learning and feature-scaling-based machine learning algorithms to predict the k-barriers for intrusion detection using wireless sensor network. Sensors, 22(3), 1070. https://doi.org/10.3390/s22031070
  3. Singh, A., Amutha, J., Nagar, J., Sharma, S., & Lee, C. C. (2022). AutoML-ID: automated machine learning model for intrusion detection using wireless sensor network. Scientific Reports, 12(1), 1-14. https://www.nature.com/articles/s41598-022-13061-z

Citation pour cette source

ABHILASH SINGH (2024). A deep learning approach to predict the number of k-barriers (https://github.com/abhilash12iec002/intrusion_detection/releases/tag/v1.0.2), GitHub. Extrait(e) le .

Singh, A., Amutha, J., Nagar, J., & Sharma, S. (2022). A deep learning approach to predict the number of k-barriers for intrusion detection over a circular region using wireless sensor networks. Expert Systems with Applications, 118588.

Compatibilité avec les versions de MATLAB
Créé avec R2022a
Compatible avec toutes les versions
Plateformes compatibles
Windows macOS Linux

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Version Publié le Notes de version
1.0.2

See release notes for this release on GitHub: https://github.com/abhilash12iec002/intrusion_detection/releases/tag/v1.0.2

1.0.0

Pour consulter ou signaler des problèmes liés à ce module complémentaire GitHub, accédez au dépôt GitHub.
Pour consulter ou signaler des problèmes liés à ce module complémentaire GitHub, accédez au dépôt GitHub.