Mitigation of adversarial attacks: monitoring smart grids
Version 1.0.0 (4 Mo) par
BERGHOUT Tarek
These codes presents a deep learning approach based robust data engineering for mitigation of adversarial attacks and wide area monitoring.
These files describe an experiment performed on phasor measurement unites dataset that is made publicly available . The goal of the experiment is to train a deep network to be resilient against any adversarial attacks. A specific Robust feature engineering and a deep learning are involved in model reconstructions. fast gradient sign method and basic iterative method are involved in this case.
Notes: (i) To be able to produce experiments provided in of these codes, you have to run the "*.m" files in the directory in alphabetical order. (ii) Then you can plot results starting by any "plot...*.m" files.
link to the original paper:
Please cite our work as:
Berghout, T.; Benbouzid, M.; Amirat, Y. Towards Resilient and Secure Smart Grids against PMU Adversarial Attacks: A Deep Learning-Based Robust Data Engineering Approach. Electronics 2023, 12, 2554. https://doi.org/10.3390/electronics12122554
Citation pour cette source
Berghout, Tarek, et al. “Towards Resilient and Secure Smart Grids against PMU Adversarial Attacks: A Deep Learning-Based Robust Data Engineering Approach.” Electronics, vol. 12, no. 12, MDPI AG, June 2023, p. 2554, doi:10.3390/electronics12122554.
Compatibilité avec les versions de MATLAB
Créé avec
R2023a
Compatible avec les versions R2018a et ultérieures
Plateformes compatibles
Windows macOS LinuxTags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Découvrir Live Editor
Créez des scripts avec du code, des résultats et du texte formaté dans un même document exécutable.
PMU_IMAGE_DATASET
PMU_IMAGE_DATASET/ADV_Data_codes
PMU_IMAGE_DATASET/Data_processing_codes
PMU_IMAGE_DATASET/Machine_Learning_functions
Version | Publié le | Notes de version | |
---|---|---|---|
1.0.0 |