fitellipse.m
There are two main methods for least squares ellipse fitting:
1) Minimise algebraic distance, i.e. minimise sum(F(x)^2) subject to some constraint, where F(x) = x'Ax + b'x + c
This is a linear least squares problem, and thus cheap to compute. There are many different possible constraints, and these produce different fits. fitellipse supplies two:
[z, a, b, al] = fitellipse(x, 'linear')
[z, a, b, al] = fitellipse(x, 'linear', 'constraint', 'trace')
See published demo file for more information.
2) Minimise geometric distance - i.e. the sum of squared distance from the data points to the ellipse. This is a more desirable fit, as it has some geometric meaning. Unfortunately, it is a nonlinear problem and requires an iterative method (e.g. Gauss Newton) to solve it. This is implemented as the default option in fitellipse. If it fails to converge, it fails gracefully (with a warning), returning the linear least squares estimate used to derive the start value
[z, a, b, alpha] = fitellipse(x)
plotellipse(z, a, b, alpha) can be used to plot the fitted ellipses
Citation pour cette source
Richard Brown (2024). fitellipse.m (https://www.mathworks.com/matlabcentral/fileexchange/15125-fitellipse-m), MATLAB Central File Exchange. Extrait(e) le .
Compatibilité avec les versions de MATLAB
Plateformes compatibles
Windows macOS LinuxCatégories
Tags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Découvrir Live Editor
Créez des scripts avec du code, des résultats et du texte formaté dans un même document exécutable.
test/
demo/
demo/html/
Version | Publié le | Notes de version | |
---|---|---|---|
1.0.0.0 | MathWorks update: Added Live Script. |