Love Evolution Algorithm

Love Evolution Algorithm: A Stimulus-Value-Role Theory Inspired Evolutionary Algorithm for Global Optimization
192 téléchargements
Mise à jour 7 fév. 2024

Afficher la licence

This paper proposes the Love Evolution Algorithm (LEA), a novel evolutionary algorithm inspired by the Stimulus-Value-Role theory. The optimization process of the LEA includes three phases: stimulus, value, and role. Both partners evolve through these phases and benefit from them regardless of the outcome of the relationship. This inspiration is abstracted into mathematical models for global optimization. The efficiency of the LEA is validated through numerical experiments with CEC2017 benchmark functions, outperforming seven metaheuristic algorithms as evidenced by the Wilcoxon signed rank test and the Friedman test.Further tests using the CEC2022 benchmark functions confirm the competitiveness of the LEA compared to seven state-of-the-art metaheuristics. Lastly, the study extends to real-world problems, demonstrating the performance of the LEA across eight diverse engineering problems.

Citation pour cette source

Yuansheng Gao (2026). Love Evolution Algorithm (https://fr.mathworks.com/matlabcentral/fileexchange/159101-love-evolution-algorithm), MATLAB Central File Exchange. Extrait(e) le .

Compatibilité avec les versions de MATLAB
Créé avec R2023b
Compatible avec toutes les versions
Plateformes compatibles
Windows macOS Linux
Tags Ajouter des tags
Version Publié le Notes de version
1.0.0