TFCNN-BiGRU

TFCNN-BiGRU with self-attention mechanism for automatic human Emotion Recognition using Multi-Channel EEG Data
93 téléchargements
Mise à jour 3 mai 2024

Afficher la licence

A new deep learning architecture that combines a time-frequency convolutional neural network (TFCNN), a bidirectional gated recurrent unit (BiGRU), and a self-attention mechanism (SAM) to categorize emotions based on EEG signals and automatically extract features. The first step is to use the continuous wavelet transform (CWT), which responds more readily to temporal frequency variations within EEG recordings, as a layer inside the convolutional layers, to create 2D scalogram images from EEG signals for time series and spatial representation learning. Second, to encode more discriminative features representing emotions, two-dimensional (2D)-CNN, BiGRU, and SAM are trained on these scalograms simultaneously to capture the appropriate information from spatial, local, temporal, and global aspects.

Citation pour cette source

Prof. Dr. Essam H Houssein (2024). TFCNN-BiGRU (https://www.mathworks.com/matlabcentral/fileexchange/165126-tfcnn-bigru), MATLAB Central File Exchange. Extrait(e) le .

Compatibilité avec les versions de MATLAB
Créé avec R2024a
Compatible avec toutes les versions
Plateformes compatibles
Windows macOS Linux
Tags Ajouter des tags
Remerciements

Inspiré par : EEG SIGNAL ANALYSIS, Deep Learning Tutorial Series

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

TFCNN_BiGRU_SAM

Version Publié le Notes de version
1.0.0