The Educational Competition Optimizer
Version 1.0.4 (3,14 Mo) par
Ali Asghar Heidari
This study proposes Educational Competition Optimizer (ECO), created for any optimization case. See: https://aliasgharheidari.com/ECO.html
Abstract: In recent research, metaheuristic strategies stand out as powerful tools for complex optimization, capturing widespread attention. This study proposes the Educational Competition Optimizer (ECO), an algorithm created for diverse optimization tasks. ECO draws inspiration from the competitive dynamics observed in real-world educational resource allocation scenarios, harnessing this principle to refine its search process. To further boost its efficiency, the algorithm divides the iterative process into three distinct phases: elementary, middle, and high school. Through this stepwise approach, ECO gradually narrows down the pool of potential solutions, mirroring the gradual competition witnessed within educational systems. This strategic approach ensures a smooth and resourceful transition between ECO's exploration and exploitation phases. The results indicate that ECO attains its peak optimization performance when configured with a population size of 40. Notably, the algorithm's optimization efficacy does not exhibit a strictly linear correlation with population size. To comprehensively evaluate ECO's effectiveness and convergence characteristics, we conducted a rigorous comparative analysis, comparing ECO against nine state-of-the-art metaheuristic algorithms. ECO's remarkable success in efficiently addressing complex optimization problems underscores its potential applicability across diverse real-world domains. The additional resources and open-source code for the proposed ECO can be accessed at https://aliasgharheidari.com/ECO.html
Citation pour cette source
Lian, Junbo, et al. “The Educational Competition Optimizer.” International Journal of Systems Science, Informa UK Limited, July 2024, pp. 1–38, doi:10.1080/00207721.2024.2367079.
Compatibilité avec les versions de MATLAB
Créé avec
R2024a
Compatible avec toutes les versions
Plateformes compatibles
Windows macOS LinuxTags
Remerciements
A inspiré : Application of Educational Competition Optimizer in BP model, Application of Educational Competition Optimizer in LSTM, Application of Educational Competition Optimizer in SVM
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Découvrir Live Editor
Créez des scripts avec du code, des résultats et du texte formaté dans un même document exécutable.
Artemisinin Optimizer (AO)-2024
Educational Competition Optimizer (ECO)-2024
Fata Morgana Algorithm (FATA)-2024
Harris Hawk Optimization (HHO)-2019
Hunger Games Search (HGS)-2021
Moss Growth Optimization (MGO)-2024
Parrot Optimizer (PO)-2024
Polar Lights Optimizer (PLO)-2024
Rime Optimization Algorithm (RIME)-2023/RIME Iteration version
Rime Optimization Algorithm (RIME)-2023/RIME function evaluation version
Runge Kutta Optimization (RUN)-2021
Slime mould algorithm (SMA)-2020
Weighted Mean of Vectors (INFO)-2022
Version | Publié le | Notes de version | |
---|---|---|---|
1.0.4 | 2024 |
||
1.0.3 | . |
||
1.0.2 | version 1 |
||
1.0.0 |