LU decomposition

Version 1.0.0 (1,79 ko) par Umar
By running the provided code with a suitable matrix input, you can obtain the lower and upper triangular matrices resulting from LU decompos
5 téléchargements
Mise à jour 11 août 2024

Afficher la licence

%After saving the function, you can test it with a sample
%matrix shown below
%q=[2 1 -1;5 0 2;9 1 0];
%[L,U]=lumine(q);
%disp(L); %display the lower matrix
%disp(U); %display the upper matrix
function [L,U]=lumine(A)
%This function performs LU decomposition on a coefficient
%matrix A,the function takes A as input and returns the
%lower matrix L and uppermatrix U
[m,n]=size(A); %defines m and n
if m~=n %checks if the matrix is square
error('Matrix A must be square');
end
if det(A)==0 % checks if the matrix is singular
error('Matrix cannot be singular');
end
%Initialize L as an identity matrix and
%U as A
L=eye(n);
U=A;
for k=1:n
for i=k+1:n
factor=U(i,k)/U(k,k);
U(i,k:n)-factor*U(k:k,n);
L(i,k)=factor;
end
end
%The diagonal of L should be set to 1(identity property
for i=1:n
L(i,i)=1;
end
end

Citation pour cette source

Umar (2026). LU decomposition (https://fr.mathworks.com/matlabcentral/fileexchange/171159-lu-decomposition), MATLAB Central File Exchange. Extrait(e) le .

Compatibilité avec les versions de MATLAB
Créé avec R2024a
Compatible avec toutes les versions
Plateformes compatibles
Windows macOS Linux
Remerciements

Inspiré par : Linear Algebra LABS with MATLAB, 2e

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Version Publié le Notes de version
1.0.0