Explainable Neural Network Regression Model with SHAP
Version 1.0.1 (496 ko) par
Mita
Radial Basis Function Neural Network training include 5-fold cross-validation and SHAP analysis for explainable model
This MATLAB script implements an explainable neural network regression model using a Radial Basis Function Neural Network (RBFNN) to predict water flux in forward osmosis processes. The model utilizes operational parameters such as membrane area, feed and draw solution flow rates, and concentrations as input features for training. To enhance interpretability, SHapley Additive exPlanations (SHAP) are applied, allowing users to gain insights into the contribution of each parameter to the model's predictions. This tool provides a powerful solution for researchers and engineers looking to develop accurate and transparent regression models while leveraging the flexibility of RBFNNs for optimizing forward osmosis system performance.
Citation pour cette source
Mita (2025). Explainable Neural Network Regression Model with SHAP (https://fr.mathworks.com/matlabcentral/fileexchange/174170-explainable-neural-network-regression-model-with-shap), MATLAB Central File Exchange. Extrait(e) le .
Compatibilité avec les versions de MATLAB
Créé avec
R2024a
Compatible avec les versions R2024a à R2024b
Plateformes compatibles
Windows macOS LinuxTags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Découvrir Live Editor
Créez des scripts avec du code, des résultats et du texte formaté dans un même document exécutable.
| Version | Publié le | Notes de version | |
|---|---|---|---|
| 1.0.1 | The published script cannot run properly on the matlab version lower than R2024a |
||
| 1.0.0 |
