BES-GO

Hybrid Bald Eagle Search (BES) and Growth Optimizer (GO)
11 téléchargements
Mise à jour 25 oct. 2024

Afficher la licence

In this study, a novel hybrid metaheuristic algorithm, termed (BES-GO), is proposed for solving benchmark structural design optimization problems, including welded beam design, three-bar truss system optimization, minimizing vertical deflection in an I-beam, optimizing the cost of tubular columns, and minimizing the weight of cantilever beams. The performance of the proposed BES-GO algorithm was compared with ten state-of-the-art metaheuristic algorithms: Bald Eagle Search (BES), Growth Optimizer (GO), Ant Lion Optimizer (ALO), Tuna Swarm Optimization (TSO), Tunicate Swarm Algorithm (TSA), Harris Hawk Optimization (HHO), Artificial Gorilla Troops Optimizer (GTO), Dingo Optimizer (DOA), Particle Swarm Optimization (PSO), and Grey Wolf Optimizer (GWO). The hybrid algorithm leverages the strengths of both BES and GO techniques to enhance search capabilities and convergence rates. The evaluation, based on the CEC’20 test suite and the selected structural design problems, shows that BES-GO consistently outperformed the other algorithms in terms of convergence speed and achieving optimal solutions, making it a robust and effective tool for structural Optimization.

Citation pour cette source

Prof. Dr. Essam H Houssein (2024). BES-GO (https://www.mathworks.com/matlabcentral/fileexchange/174435-bes-go), MATLAB Central File Exchange. Extrait(e) le .

Compatibilité avec les versions de MATLAB
Créé avec R2024b
Compatible avec toutes les versions
Plateformes compatibles
Windows macOS Linux
Tags Ajouter des tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

BES_GO code

Version Publié le Notes de version
1.0.0