Applying Machine Learning to Deterministic Pump-Pipe System

The understanding of ML fundamentals is also useful to apply it to well-defined deterministic systems where results can be validated.
16 téléchargements
Mise à jour 1 mars 2025

Afficher la licence

Machine learning (ML) is widely used to model complex, non-linear relationships in data, especially when dealing with uncertainties or measurement errors. However, to develop an understanding of ML fundamentals, it is also useful to apply it to well-defined deterministic systems where results can be validated against known physical models. This document outlines a structured workflow where ML is applied to a simulated centrifugal pump and pipeline system. The goal is to train a neural network using synthetic data and verify its predictive capability against the original simulation results.

Citation pour cette source

S. P. Vasekar (Geca Adj. Prof.) (2026). Applying Machine Learning to Deterministic Pump-Pipe System (https://fr.mathworks.com/matlabcentral/fileexchange/180269-applying-machine-learning-to-deterministic-pump-pipe-system), MATLAB Central File Exchange. Extrait(e) le .

Compatibilité avec les versions de MATLAB
Créé avec R2024b
Compatible avec toutes les versions
Plateformes compatibles
Windows macOS Linux
Tags Ajouter des tags
Version Publié le Notes de version
1.0.1

Image file added

1.0.0