Adaptive Memetic Binary Optimization (AMBO) Algorithm
Version 1.0.0 (148 ko) par
Ahmet Cevahir ÇINAR
A novel adaptive memetic binary optimization algorithm for feature selection
AMBO: Adaptive Memetic Binary Optimization Algorithm for Feature Selection
This repository contains the official MATLAB implementation of the AMBO (Adaptive Memetic Binary Optimization) algorithm proposed in the paper:
A. C. Çınar, A novel adaptive memetic binary optimization algorithm for feature selection, Artificial Intelligence Review, 2023. DOI: 10.1007/s10462-023-10482-8
📌 About the Project
AMBO is a pure binary metaheuristic algorithm specifically designed for feature selection tasks. It uses:
- Adaptive crossover mechanisms (single-point, double-point, uniform)
- Canonical mutation
- Logic gate-based local search using AND, OR, and XOR for balancing exploration and exploitation.
It has been tested on 21 benchmark datasets and outperformed several state-of-the-art algorithms including BPSO, GA variants, BDA, BSSA, and BGWO.
📂 Files
- Main.m: Main script to run the algorithm.
- datasets/: Sample datasets used in the paper.
- results/: Contains output logs and performance results.
🧪 Requirements
- MATLAB R2021a or later
- Statistics and Machine Learning Toolbox (for KNN)
📈 Citation
If you use this code or data in your research, please cite the paper as:
@article{cinar2023ambo,
title={A novel adaptive memetic binary optimization algorithm for feature selection},
author={Cinar, Ahmet Cevahir},
journal={Artificial Intelligence Review},
year={2023},
doi={10.1007/s10462-023-10482-8}
}
🤝 Collaboration
Contributions, ideas, and collaborations are welcome!
Feel free to contact me for research partnerships, extensions, or comparative benchmarking:
Citation pour cette source
@article{cinar2023ambo, title={A novel adaptive memetic binary optimization algorithm for feature selection}, author={Cinar, Ahmet Cevahir}, journal={Artificial Intelligence Review}, year={2023}, doi={10.1007/s10462-023-10482-8} }
Compatibilité avec les versions de MATLAB
Créé avec
R2025a
Compatible avec toutes les versions
Plateformes compatibles
Windows macOS LinuxTags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Découvrir Live Editor
Créez des scripts avec du code, des résultats et du texte formaté dans un même document exécutable.
Les versions qui utilisent la branche GitHub par défaut ne peuvent pas être téléchargées
| Version | Publié le | Notes de version | |
|---|---|---|---|
| 1.0.0 |
|
Pour consulter ou signaler des problèmes liés à ce module complémentaire GitHub, accédez au dépôt GitHub.
Pour consulter ou signaler des problèmes liés à ce module complémentaire GitHub, accédez au dépôt GitHub.
