Cuckoo optimization algorithm via Grey wolf optimizer

Version 1.0.0 (4,67 ko) par Pavel
• COGWO blends cuckoo eggs+migration with wolf moves. • It clusters, spawns variants then refines. • It clamps bounds, caps size, logs best.
43 téléchargements
Mise à jour 6 sept. 2025

Afficher la licence

  • COA exploration: Each agent lays eggs within a local radius tied to search-range and egg share; new eggs are sampled around parents, the worst fraction is discarded, and the population is trimmed back to a fixed size.
  • COA migration: The population is clustered into habitats; a focal habitat is chosen by average fitness, and all agents move a controlled step toward its best member with a small random directional deviation.
  • GWO exploitation: Inside each habitat, three leaders (alpha, beta, delta) guide the rest; agents update their positions toward the leaders using time-decreasing influence to intensify search near promising areas.
  • Hybrid loop & constraints: Each iteration evaluates fitness, clusters, migrates, lays eggs and culls, merges and truncates, then applies the GWO update—while positions are clamped to the variable bounds.
  • Convergence tracking: The global best-so-far (strongest alpha across habitats) is updated after the full iteration and logged to produce a monotone convergence curve for minimization.

Citation pour cette source

Pavel (2025). Cuckoo optimization algorithm via Grey wolf optimizer (https://fr.mathworks.com/matlabcentral/fileexchange/181972-cuckoo-optimization-algorithm-via-grey-wolf-optimizer), MATLAB Central File Exchange. Extrait(e) le .

Compatibilité avec les versions de MATLAB
Créé avec R2025a
Compatible avec toutes les versions
Plateformes compatibles
Windows macOS Linux

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Version Publié le Notes de version
1.0.0