A novel Kangaroo Escape Optimizer: Weight Function Example

A novel Kangaroo Escape Optimizer designed for Weight Function Example
21 téléchargements
Mise à jour 25 sept. 2025

Afficher la licence

This study introduces a novel Kangaroo Escape Algorithm (KEA), that parallels the survival-driven escape behaviors of Kangaroos integrating adaptive energy control and chaotic perturbation to achieve an effective balance between exploration and exploitation. Unlike conventional algorithms that rely on multiple tuning parameters, KEA operates with only two user-defined settings, offering a simplified yet highly efficient optimization framework. It uses zigzag escape and long jump escape models, with a unique decoy drop mechanism to improve solution diversity and avoid premature convergence.

Citation pour cette source

[1] A. S. Aljumah, M. H. Alqahtani, A. R. Ginidi, and A. M. Shaheen, “A novel Kangaroo Escape Algorithm for efficient combined heat and power economic dispatch: Feasibility analysis and validations,” Energy Reports, vol. 14, pp. 2535–2556, Dec. 2025, doi: 10.1016/J.EGYR.2025.09.016.

[2] S. Z. A. M. and A. Shaheen, “A Kangaroo Escape Optimizer-Enabled Fractional-Order PID Controller for Enhancing Dynamic Stability in Multi-Area Power Systems,” Fractal Fract., vol. 9, no. 8, p. 530, 2025, doi: https://doi.org/10.3390/fractalfract9080530.

Compatibilité avec les versions de MATLAB
Créé avec R2025b
Compatible avec toutes les versions
Plateformes compatibles
Windows macOS Linux

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Version Publié le Notes de version
1.0.0