Visualizing the estimation of pai in Monte Carlo simulation
Version 1.0.0 (2,12 ko) par
Chun
A visualization of the estimation of pai used Monte Carlo simulation
clear; clc; close all;
n = 50000;
N_total = 1000000;
update_rate_sim = 50;
update_rate_conv = 500;
fig = figure('Name', 'Monte Carlo Estimation of π (High-Speed Background Calculation)', 'NumberTitle', 'off', 'Color', 'w', 'Position', [100, 100, 1200, 600]);
ax1 = subplot(1, 2, 1);
axis(ax1, 'square');
axis(ax1, [-1, 1, -1, 1]);
hold(ax1, 'on');
grid(ax1, 'on'); box(ax1, 'on');
ax2 = subplot(1, 2, 2);
hold(ax2, 'on');
grid(ax2, 'on'); box(ax2, 'on');
xlabel(ax2, 'Number of Throws', 'FontSize', 12);
ylabel(ax2, 'π Estimate', 'FontSize', 12);
title(ax2, 'Convergence of π Estimate', 'FontSize', 14);
rectangle(ax1, 'Position', [-1, -1, 2, 2], 'EdgeColor', '#4DBEEE', 'LineWidth', 1.5);
viscircles(ax1, [0 0], 1, 'Color', 'r', 'LineWidth', 2);
title_handle = title(ax1, 'Preparing to start simulation...', 'FontSize', 14);
pi_line = yline(ax2, pi, '--r', 'True π Value', 'LineWidth', 2);
pi_line.LabelHorizontalAlignment = 'left';
pi_line.FontSize = 12;
axis(ax2, [0, n, 2.8, 3.6]);
points_inside_plot = plot(ax1, NaN, NaN, 'b.', 'MarkerSize', 8);
points_outside_plot = plot(ax1, NaN, NaN, 'g.', 'MarkerSize', 8);
legend(ax1, {'Circle', 'Points Inside', 'Points Outside'}, 'Location', 'northeastoutside', 'AutoUpdate', 'off');
convergence_plot = plot(ax2, NaN, NaN, '-b', 'LineWidth', 1.5);
points_in_circle = 0;
history_i = [];
history_pi = [];
pause(1);
for i = 1:n
x = 2 * rand() - 1;
y = 2 * rand() - 1;
distance_sq = x^2 + y^2;
if distance_sq <= 1
points_in_circle = points_in_circle + 1;
set(points_inside_plot, 'XData', [get(points_inside_plot, 'XData'), x], 'YData', [get(points_inside_plot, 'YData'), y]);
else
set(points_outside_plot, 'XData', [get(points_outside_plot, 'XData'), x], 'YData', [get(points_outside_plot, 'YData'), y]);
end
pi_estimate = 4 * points_in_circle / i;
if mod(i, update_rate_sim) == 0 || i == n
set(title_handle, 'String', sprintf('Points Thrown: %d / %d\nπ Estimate ≈ %.6f', i, n, pi_estimate));
drawnow limitrate;
end
if mod(i, update_rate_conv) == 0 || i == n
history_i = [history_i, i];
history_pi = [history_pi, pi_estimate];
set(convergence_plot, 'XData', history_i, 'YData', history_pi);
end
end
set(title_handle, 'String', sprintf('Visualization finished!\nCalculating up to %d points in background...', N_total));
drawnow;
n_remaining = N_total - n;
x_bg = 2 * rand(n_remaining, 1) - 1;
y_bg = 2 * rand(n_remaining, 1) - 1;
points_in_circle_bg = sum(x_bg.^2 + y_bg.^2 <= 1);
points_in_circle = points_in_circle + points_in_circle_bg;
pi_final_estimate = 4 * points_in_circle / N_total;
plot(ax2, N_total, pi_final_estimate, 'r*', 'MarkerSize', 12, 'LineWidth', 2, 'DisplayName', 'Final Estimate');
legend(ax2, {'Convergence Curve', 'True π Value', 'Final Value (Million Throws)'}, 'Location', 'best');
legend(ax2, 'boxoff');
final_title_str = sprintf('Final Result (%d Points Thrown)\nHigh-Precision π Estimate ≈ %.6f', N_total, pi_final_estimate);
set(title_handle, 'String', final_title_str);
hold(ax1, 'off');
hold(ax2, 'off');
Citation pour cette source
Chun (2025). Visualizing the estimation of pai in Monte Carlo simulation (https://fr.mathworks.com/matlabcentral/fileexchange/182286-visualizing-the-estimation-of-pai-in-monte-carlo-simulation), MATLAB Central File Exchange. Extrait(e) le .
Compatibilité avec les versions de MATLAB
Créé avec
R2025b
Compatible avec toutes les versions
Plateformes compatibles
Windows macOS LinuxTags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Découvrir Live Editor
Créez des scripts avec du code, des résultats et du texte formaté dans un même document exécutable.
| Version | Publié le | Notes de version | |
|---|---|---|---|
| 1.0.0 |
