Precision-Recall and ROC Curves
Consider a binary classification task, and a real-valued predictor, where higher values denote more confidence that an instance is positive. By setting a fixed threshold on the output, we can trade-off recall (=true positive rate) versus false positive rate (resp. precision).
Depending on the relative class frequencies, ROC and P/R curves can highlight different properties; for details, see e.g., Davis & Goadrich, 'The Relationship Between Precision-Recall and ROC Curves', ICML 2006.
Citation pour cette source
Stefan Schroedl (2025). Precision-Recall and ROC Curves (https://www.mathworks.com/matlabcentral/fileexchange/21528-precision-recall-and-roc-curves), MATLAB Central File Exchange. Extrait(e) le .
Compatibilité avec les versions de MATLAB
Plateformes compatibles
Windows macOS LinuxCatégories
- AI and Statistics > Statistics and Machine Learning Toolbox >
- Industries > Biotech and Pharmaceutical > ROC - AUC >
Tags
Remerciements
A inspiré : Lynx MATLAB Toolbox
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Découvrir Live Editor
Créez des scripts avec du code, des résultats et du texte formaté dans un même document exécutable.
prec_rec/
Version | Publié le | Notes de version | |
---|---|---|---|
1.2.0.0 | Updated function arguments, added options |
||
1.1.0.0 | Update for better user interface, added options |
||
1.0.0.0 |