Expectation-Maximization algorithm for bi-variate Normal Inverse Gaussian distribution
EM estimation of parameters of bi variate NIG distribution.
The test file:
1. Simulate biNIG sample with use of randraw.m (http://www.mathworks.com/matlabcentral/fileexchange/7309)
or invgrnd.m (http://www.mathworks.com/matlabcentral/fileexchange/10934) .
2. Calls EMBIVNIG.m (values of starting parameters are chosen arbitrary).
3. Calls binigpp.m for P-P plot to check the fit.
References:
"EM-estimation and modeling of heavy-tailed processes with the multivariate normal inverse Gaussian distribution", Oigard, Hanssen, Hansen and Godtliebsen, Signal Processing, vol. 85 (2005), p. 1655-1673
"The Two-Dimensional Hyperbolic Distribution and Related Distributions, with an Application to Johannsen's Bean Data", P. Blaesild, Biometrika, vol. 68, No. 1 (Apr., 1981), pp. 251-263, (Theorem 1 (a) & (c), p. 253)
Any comments welcome :)
Citation pour cette source
Karol Binkowski (2026). Expectation-Maximization algorithm for bi-variate Normal Inverse Gaussian distribution (https://fr.mathworks.com/matlabcentral/fileexchange/22058-expectation-maximization-algorithm-for-bi-variate-normal-inverse-gaussian-distribution), MATLAB Central File Exchange. Extrait(e) le .
Compatibilité avec les versions de MATLAB
Plateformes compatibles
Windows macOS LinuxCatégories
Tags
Découvrir Live Editor
Créez des scripts avec du code, des résultats et du texte formaté dans un même document exécutable.
| Version | Publié le | Notes de version | |
|---|---|---|---|
| 1.4.0.0 | Added convergence criteria, storing em estimates after each M-step, skewness and kurtosis check |
||
| 1.3.0.0 | Added: em convergence criteria, storing of estimates after each M-step, skewness and kurtosis check of simulated sample |
||
| 1.2.0.0 | Updated link to invgrnd.m
|
||
| 1.1.0.0 | P-P plot has been added to check the fit
|
||
| 1.0.0.0 |
