Steepest Decent Method for Multiple Variable Functions

Version 1.0.0.0 (933 octets) par Siamak Faridani
Solves a multivariable unconstrained optimization method using the Steepest Decent Method
3,9K téléchargements
Mise à jour 7 jan. 2009

Aucune licence

Replace your function in the code and the output will be similar to the following

Steepest Descent Method
=============
Function = -(3*x1+x2+6*x1*x2-2*(x1^2)+2*(x2^2))
Hessian......

[ 4 -6]
[ ]
[-6 -4]
Gradient......

[-3 - 6 x2 + 4 x1]
[ ]
[-1 - 6 x1 - 4 x2]
Eigen Values
[ 2*13^(1/2), 0]
[ 0, -2*13^(1/2)]

f(x0)=5.000000
_________________________________________
Iteration = 1
Gradient of X0
-7
5

X0 =
-1
0

X0 - alpha. gradient(X0) =
-1+7*alpha
-5*alpha

f(X0 - alpha. gradient(X0)) =
3-16*alpha+30*(-1+7*alpha)*alpha+2*(-1+7*alpha)^2-50*alpha^2

diff(f(X0 - alpha. gradient(X0)))/diff alpha =
-74+516*alpha


alphaval =

37/258

alphaval2 =

0.143410852713178

x1 =
0.003875968992248
-0.717054263565892

f(x2)=-0.306202
_________________________________________
Iteration = 2
Gradient of X1
1.317829457364341
1.844961240310078

X1 =
0.003875968992248
-0.717054263565892

X1 - alpha. gradient(X1) =
1/258-170/129*alpha
-185/258-238/129*alpha

f(X1 - alpha. gradient(X1)) =
91/129+748/129*alpha-6*(1/258-170/129*alpha)*(-185/258-238/129*alpha)+2*(1/258-170/129*alpha)^2-2*(-185/258-238/129*alpha)^2

diff(f(X1 - alpha. gradient(X1)))/diff alpha =
-85544/16641-4624/129*alpha


alphaval =

-37/258

alphaval2 =

-0.143410852713178

Citation pour cette source

Siamak Faridani (2026). Steepest Decent Method for Multiple Variable Functions (https://fr.mathworks.com/matlabcentral/fileexchange/22617-steepest-decent-method-for-multiple-variable-functions), MATLAB Central File Exchange. Extrait(e) le .

Compatibilité avec les versions de MATLAB
Créé avec R2007b
Compatible avec toutes les versions
Plateformes compatibles
Windows macOS Linux
Catégories
En savoir plus sur Nonlinear Optimization dans Help Center et MATLAB Answers
Version Publié le Notes de version
1.0.0.0