# FFT-based convolution

Version 1.7.0.3 (6,04 ko) par
Discrete convolution using FFT method
10,9K téléchargements
Mise à jour 14 juin 2021

Afficher la licence

As opposed to Matlab CONV, CONV2, and CONVN implemented as straight forward sliding sums, CONVNFFT uses Fourier transform (FT) convolution theorem, i.e. FT of the convolution is equal to the product of the FTs of the input functions.
In 1-D, the complexity is O((na+nb)*log(na+nb)), where na/nb are respectively the lengths of A and B.
Optional arguments to control the dimension(s) along which convolution is carried out.
Slightly less accurate than sliding sum convolution.
Good usage recommendation:
In 1D, this function is faster than CONV for nA, nB > 1000.
In 2D, this function is faster than CONV2 for nA, nB > 20.
In 3D, this function is faster than CONVN for nA, nB > 5.

### Citation pour cette source

Bruno Luong (2024). FFT-based convolution (https://www.mathworks.com/matlabcentral/fileexchange/24504-fft-based-convolution), MATLAB Central File Exchange. Récupéré le .

##### Compatibilité avec les versions de MATLAB
Créé avec R2009a
Compatible avec toutes les versions
##### Plateformes compatibles
Windows macOS Linux
##### Catégories
En savoir plus sur Fourier Analysis and Filtering dans Help Center et MATLAB Answers

### Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

#### CONVNFFT_Folder

Version Publié le Notes de version
1.7.0.3

Fix bug when calling with syntax CONV2FFT(H1, H2, A, SHAPE)

1.7.0.2

Installation script use now right mex compilation options for R2018a or later

1.7.0.1

Make inplaceprod compatible with interleaved complex

1.7.0.0

Add the syntax conv2fft(H1, H2, A, ...)

1.6.0.0

Option allows to disable padding to next power-two. Mex implement inplace product that saves about 1/3 memory. These two enhancement might be useful when perform convolution with very large arrays.

1.5.0.0

GPU unable by default + changes in help section

1.4.0.0

GPU/Jacket capable

1.1.0.0

correct bug when ndims(A)<ndims(B)

1.0.0.0